IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3821-d1448896.html
   My bibliography  Save this article

Photovoltaics Energy Potential in the Largest Greek Cities: Atmospheric and Urban Fabric Effects, Climatic Trends Influences and Socio-Economic Benefits

Author

Listed:
  • Stavros Vigkos

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece)

  • Panagiotis G. Kosmopoulos

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece)

Abstract

This comprehensive study explores the influence of aerosols and clouds on solar radiation in the urban environments of nine of Greece’s largest cities over the decade from 2014 to 2023. Utilizing a combination of Earth Observation data, radiative transfer models, and geographic information systems, the research undertook digital surface modeling and photovoltaic simulations. The study meticulously calculated the optimal rooftop areas for photovoltaic installation in these cities, contributing significantly to their energy adequacy and achieving a balance between daily electricity production and demand. Moreover, the research provides an in-depth analysis of energy and economic losses, while also highlighting the environmental benefits. These include a reduction in pollutant emissions and a decrease in the carbon footprint, aligning with the global shift towards local energy security and the transformation of urban areas into green, smart cities. The innovative methodology of this study, which leverages open access data, sets a strong foundation for future research in this field. It opens up possibilities for similar studies and has the potential to contribute to the creation of an updated, comprehensive solar potential map for continental Greece. This could be instrumental in climate change mitigation and adaptation strategies, thereby promoting sustainable urban development and environmental preservation.

Suggested Citation

  • Stavros Vigkos & Panagiotis G. Kosmopoulos, 2024. "Photovoltaics Energy Potential in the Largest Greek Cities: Atmospheric and Urban Fabric Effects, Climatic Trends Influences and Socio-Economic Benefits," Energies, MDPI, vol. 17(15), pages 1-32, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3821-:d:1448896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paulius Kozlovas & Saulius Gudzius & Jokubas Ciurlionis & Audrius Jonaitis & Inga Konstantinaviciute & Viktorija Bobinaite, 2023. "Assessment of Technical and Economic Potential of Urban Rooftop Solar Photovoltaic Systems in Lithuania," Energies, MDPI, vol. 16(14), pages 1-29, July.
    2. William Alomoto & Angels Niñerola & Laia Pié, 2022. "Social Impact Assessment: A Systematic Review of Literature," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(1), pages 225-250, May.
    3. Kosmopoulos, Panagiotis & Dhake, Harshal & Kartoudi, Danai & Tsavalos, Anastasios & Koutsantoni, Pelagia & Katranitsas, Apostolos & Lavdakis, Nikolaos & Mengou, Eftihia & Kashyap, Yashwant, 2024. "Ray-Tracing modeling for urban photovoltaic energy planning and management," Applied Energy, Elsevier, vol. 369(C).
    4. Maria Karagianni, 2023. "Making Thessaloniki Resilient? The Enclosing Process of the Urban Green Commons," Urban Planning, Cogitatio Press, vol. 8(1), pages 346-360.
    5. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    2. Hossein Heirani & Naser Bagheri Moghaddam & Sina Labbafi & Seyedali Sina, 2022. "A Business Model for Developing Distributed Photovoltaic Systems in Iran," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    3. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    4. Moon-Hyun Kim & Tae-Hyoung Tommy Gim, 2021. "Spatial Characteristics of the Diffusion of Residential Solar Photovoltaics in Urban Areas: A Case of Seoul, South Korea," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    5. Chaminda Bandara, W.G. & Godaliyadda, G.M.R.I. & Ekanayake, M.P.B. & Ekanayake, J.B., 2020. "Coordinated photovoltaic re-phasing: A novel method to maximize renewable energy integration in low voltage networks by mitigating network unbalances," Applied Energy, Elsevier, vol. 280(C).
    6. Horia Andrei & Cristian Andrei Badea & Paul Andrei & Filippo Spertino, 2020. "Energetic-Environmental-Economic Feasibility and Impact Assessment of Grid-Connected Photovoltaic System in Wastewater Treatment Plant: Case Study," Energies, MDPI, vol. 14(1), pages 1-22, December.
    7. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    8. Kumar Ganti, Praful & Naik, Hrushikesh & Kanungo Barada, Mohanty, 2022. "Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree appr," Energy, Elsevier, vol. 244(PA).
    9. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Hualong Zheng & Yizhang Wang & Dexin Xie & Zhijin Zhang & Xingliang Jiang, 2024. "Analysis of Solar Radiation Differences for High-Voltage Transmission Lines on Micro-Terrain Areas," Energies, MDPI, vol. 17(7), pages 1-16, April.
    11. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    13. Driss El Kadiri Boutchich, 2023. "Model for Promoting Corporate Social Performance Measurement and Social Change: Elaboration from Causal Analysis Between the Both," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 169(1), pages 209-234, September.
    14. Job Taminiau & John Byrne & Jongkyu Kim & Min‐Hwi Kim & Jeongseok Seo, 2022. "Inferential‐ and measurement‐based methods to estimate rooftop “solar city” potential in megacity Seoul, South Korea," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    15. Chen, Han & Chen, Wenying, 2021. "Status, trend, economic and environmental impacts of household solar photovoltaic development in China: Modelling from subnational perspective," Applied Energy, Elsevier, vol. 303(C).
    16. Chen, Zhe & Yang, Bisheng & Zhu, Rui & Dong, Zhen, 2024. "City-scale solar PV potential estimation on 3D buildings using multi-source RS data: A case study in Wuhan, China," Applied Energy, Elsevier, vol. 359(C).
    17. Jiang, Wei & Zhang, Shuo & Wang, Teng & Zhang, Yufei & Sha, Aimin & Xiao, Jingjing & Yuan, Dongdong, 2024. "Evaluation method for the availability of solar energy resources in road areas before route corridor planning," Applied Energy, Elsevier, vol. 356(C).
    18. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    19. Kosmopoulos, Panagiotis & Dhake, Harshal & Kartoudi, Danai & Tsavalos, Anastasios & Koutsantoni, Pelagia & Katranitsas, Apostolos & Lavdakis, Nikolaos & Mengou, Eftihia & Kashyap, Yashwant, 2024. "Ray-Tracing modeling for urban photovoltaic energy planning and management," Applied Energy, Elsevier, vol. 369(C).
    20. Andrea Reimuth & Veronika Locherer & Martin Danner & Wolfram Mauser, 2020. "How Does the Rate of Photovoltaic Installations and Coupled Batteries Affect Regional Energy Balancing and Self-Consumption of Residential Buildings?," Energies, MDPI, vol. 13(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3821-:d:1448896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.