IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3514-d1437190.html
   My bibliography  Save this article

The Evolutionary Path and Emerging Trends of Circulating Fluidized Bed Technology: An Integrated Analysis through Bibliometric Assessment and Data Visualization

Author

Listed:
  • Qimei Chen

    (National Science Library, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yurong Gou

    (National Science Library, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Tangrong Wang

    (National Science Library, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Pengbo Liu

    (National Science Library, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jianguo Zhu

    (University of Chinese Academy of Sciences, Beijing 100049, China
    Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Confronted with the significant challenges of global climate change and environmental deterioration, the pursuit of carbon emission peaks and the realization of carbon neutrality have become a collective goal for countries worldwide. As an exemplary combustion technology noted for its efficiency and environmental friendliness, the circulating fluidized bed (CFB) is instrumental in curbing the release of carbon dioxide alongside other deleterious gases. The technology is pivotal in promoting the clean and efficient use of coal, simultaneously expediting the global shift towards a sustainable, green, and low-carbon future. This study employs a bibliometric analysis, a social network analysis, and information visualization techniques to delve into the evolution of CFB technology, leveraging the Web of Science database (SCI-EXPANDED and CPCI-S) and the Derwent Innovations Index (DII). Through a meticulous examination of academic papers and patent literature related to CFB technology, this research unveils the developmental trajectory and trends of CFB technology, providing a scientific foundation and reference for strategic technology planning and focused research in key areas. The findings indicate that, while there is a downward trend in the global publication of academic papers on CFB technology, the number of patent applications continues to grow steadily. CFB technology has achieved significant advancements in enhancing combustion efficiency, environmental protection, energy utilization, and waste management, and is progressing towards a direction of diversification and greater efficiency. Moving forward, the development of CFB technology should concentrate on pivotal areas such as material science, fluid dynamics simulation, environmental impact assessment, system integration, and intelligentization, to foster ongoing innovation and a broad application of the technology.

Suggested Citation

  • Qimei Chen & Yurong Gou & Tangrong Wang & Pengbo Liu & Jianguo Zhu, 2024. "The Evolutionary Path and Emerging Trends of Circulating Fluidized Bed Technology: An Integrated Analysis through Bibliometric Assessment and Data Visualization," Energies, MDPI, vol. 17(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3514-:d:1437190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Daewook & Won, Yooseob & Hwang, Byung Wook & Kim, Jae Young & Kim, Hana & Choi, Yujin & Lee, Yu-Ri & Lee, Seung-Yong & Jo, Sung-Ho & Park, Young Cheol & Baek, Jeom-In & Nam, Hyungseok & Lee, Doye, 2023. "Loop-seal flow characteristics of a circulating fluidized bed for 3 MWth scale chemical looping combustion system," Energy, Elsevier, vol. 274(C).
    2. Lei Han & Lingmei Wang & Hairui Yang & Chengzhen Jia & Enlong Meng & Yushan Liu & Shaoping Yin, 2023. "Optimization of Circulating Fluidized Bed Boiler Combustion Key Control Parameters Based on Machine Learning," Energies, MDPI, vol. 16(15), pages 1-23, July.
    3. Wang, Chao & Zhu, Lianfeng & Zhang, Mengjuan & Han, Zhennan & Jia, Xin & Bai, Dingrong & Duo, Wenli & Bi, Xiaotao & Abudula, Abuliti & Guan, Guoqing & Xu, Guangwen, 2022. "A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yubin Lin & Qinhui Wang & Chao Ye & Yao Zhu & Haojie Fan, 2023. "Experimental Research on the Gas-Solid Flow Characteristics in Large-Scale Dual Fluidized Bed Reactor," Energies, MDPI, vol. 16(21), pages 1-19, October.
    2. Marco Mancini & Andreas Schwabauer, 2023. "On the Thermal Stability of a Counter-Current Fixed-Bed Gasifier," Energies, MDPI, vol. 16(9), pages 1-36, April.
    3. Yang, Dongtai & Li, Sheng & He, Song, 2024. "Zero/negative carbon emission coal and biomass staged co-gasification power generation system via biomass heating," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3514-:d:1437190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.