IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3458-d1434686.html
   My bibliography  Save this article

Thermochemical Valorization of Plastic Waste Containing Low Density Polyethylene, Polyvinyl Chloride and Polyvinyl Butyral into Thermal and Fuel Energy

Author

Listed:
  • Beata Jabłońska

    (Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka St. 60a, 42-200 Częstochowa, Poland)

  • Gabriela Poznańska

    (HIG Polska Sp. z o.o., Niedźwiedziniec St. 18, 41-506 Chorzów, Poland)

  • Paweł Jabłoński

    (Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland)

  • Joanna Zwolińska

    (Center for Advanced Technology, Adam Mickiewicz University, Wieniawskiego St. 1, 61-712 Poznań, Poland)

Abstract

Pyrolysis is a promising technology for transforming waste plastics (WPs) into high-value products. In the near future it will play a key role in the circular economy, as a sustainable and environmentally friendly method of managing this waste. Although the literature reports on the pyrolysis of plastics, it is focused on pure polymers. On the other hand, the state-of-the-art knowledge about the pyrolysis of mixed and contaminated WPs is still scarce. Industrial waste processing usually uses polymer mixtures containing various impurities that influence the pyrolysis process during chemical WPs recycling. In the paper the pyrolysis of three types of WPs: low density polyethylene (LDPE), polyvinyl chloride (PVC) and polyvinyl butyral (PVB) from repeated mechanical recycling of plastics, as well as their binary and ternary mixtures, is considered. The influence of particular components on the pyrolysis process is analyzed. The aim is to determine synergistic behavior of the mixtures during the pyrolysis process, which is important for increasing the efficiency and quality of the obtained bioproducts. Methods such as thermogravimetric (TG/DTG) analysis coupled with Fourier transform infrared spectroscopy (FTIR) and mass spectroscopy (MS) are used. The variations in the initial and final temperature of pyrolysis, mass loss and mass loss rate are determined. The content of PVC significantly lowers the initial temperature and mass loss and increases the final temperature. The pyrolysis of the considered mixtures shows a noticeable synergism—in the initial stage of pyrolysis up to a temperature around 450 °C, the mass loss is accelerated compared to what is predicted by simple superposition. The inhomogeneity of the mixtures as well as the waste origin causes a significant variation in the activation energy. Three main conclusions are obtained: (i) if the waste does not contain PVC, the pyrolysis is nearly complete at a temperature around 500 °C at a heating rate of 10 °C/min, whereas PVC is not fully processed even at 995 °C; (ii) the synergistic effects affect significantly the pyrolysis process by accelerating some steps and lowering the activation energy; and (iii) the presence of PVC noticeably lowers the temperature of the first stage of PVB pyrolysis. The investigation results prove that chemical recycling of mixed LDPE, PVC and PVB waste can be an effective method of plastic waste management.

Suggested Citation

  • Beata Jabłońska & Gabriela Poznańska & Paweł Jabłoński & Joanna Zwolińska, 2024. "Thermochemical Valorization of Plastic Waste Containing Low Density Polyethylene, Polyvinyl Chloride and Polyvinyl Butyral into Thermal and Fuel Energy," Energies, MDPI, vol. 17(14), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3458-:d:1434686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hossam A. Gabbar & Mohamed Aboughaly & C.A. Barry Stoute, 2017. "DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction," Energies, MDPI, vol. 10(6), pages 1-15, June.
    2. Beata Jabłońska & Paweł Kiełbasa & Maroš Korenko & Tomasz Dróżdż, 2019. "Physical and Chemical Properties of Waste from PET Bottles Washing as A Component of Solid Fuels," Energies, MDPI, vol. 12(11), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    2. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    3. B. T. Ramesh & Javed Sayyad & Arunkumar Bongale & Anupkumar Bongale, 2022. "Extraction and Performance Analysis of Hydrocarbons from Waste Plastic Using the Pyrolysis Process," Energies, MDPI, vol. 15(24), pages 1-10, December.
    4. Lars Zigan, 2018. "Overview of Electric Field Applications in Energy and Process Engineering," Energies, MDPI, vol. 11(6), pages 1-33, May.
    5. Marianna Czaplicka & Justyna Klyta & Bogusław Komosiński & Tomasz Konieczny & Katarzyna Janoszka, 2021. "Comparison of Carbonaceous Compounds Emission from the Co-Combustion of Coal and Waste in Boilers Used in Residential Heating in Poland, Central Europe," Energies, MDPI, vol. 14(17), pages 1-15, August.
    6. Chalita Kaewbuddee & Ekarong Sukjit & Jiraphon Srisertpol & Somkiat Maithomklang & Khatha Wathakit & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn, 2020. "Evaluation of Waste Plastic Oil-Biodiesel Blends as Alternative Fuels for Diesel Engines," Energies, MDPI, vol. 13(11), pages 1-16, June.
    7. Sharma, Bhasha & Goswami, Yagyadatta & Sharma, Shreya & Shekhar, Shashank, 2021. "Inherent roadmap of conversion of plastic waste into energy and its life cycle assessment: A frontrunner compendium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Lin Du & Yubo Wang & Wujing Wang & Xiangxiang Chen, 2018. "Studies on a Thermal Fault Simulation Device and the Pyrolysis Process of Insulating Oil," Energies, MDPI, vol. 11(12), pages 1-16, December.
    9. Jie Ma & Ming Zhang & Jianhua Wu & Qiwei Yang & Guangdong Wen & Baogen Su & Qilong Ren, 2017. "Hydropyrolysis of n- Hexane and Toluene to Acetylene in Rotating-Arc Plasma," Energies, MDPI, vol. 10(7), pages 1-12, July.
    10. Cristian Silviu Banacu & Mihail Busu & Raluca Ignat & Carmen Lenuta Trica, 2019. "Entrepreneurial Innovation Impact on Recycling Municipal Waste. A Panel Data Analysis at the EU Level," Sustainability, MDPI, vol. 11(18), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3458-:d:1434686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.