IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3454-d1434635.html
   My bibliography  Save this article

Numerical and Experimental Determination of Selected Performance Indicators of the Liquid Flat-Plate Solar Collector under Outdoor Conditions

Author

Listed:
  • Wiesław Zima

    (Department of Energy, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Krakow, Poland)

  • Łukasz Mika

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland)

  • Karol Sztekler

    (Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland)

Abstract

The paper proposes applying an in-house mathematical model of a liquid flat-plate solar collector to calculate the collector time constant. The described model, proposed for the first time in an earlier study, is a one-dimensional distributed parameter model enabling simulations of the collector operation under arbitrarily variable boundary conditions. The model is based on the solution of energy balance equations for all collector components. The formulated differential equations are solved iteratively using an implicit difference scheme. To obtain a stable numerical solution, it is necessary to use appropriate steps of time and spatial division. These were found by comparing the results obtained from the model with the results of the analytical solution available in the literature for the transient state, which constitutes the novelty of the present study. The accuracy of the results obtained from the model was verified experimentally by comparing the measured and calculated history of the fluid temperature at the outlet of the collector. The calculation of the collector time constant is proposed in the paper as an example of the model’s practical application. The results of the time constant calculation were compared with the values obtained experimentally on the test stand. This is another novelty of the presented research. The analysed collector instantaneous efficiency was then calculated for selected outdoor conditions. The presented mathematical model can also be used to verify the correctness of the collector operation. By comparing, on an ongoing basis, the measured and calculated values of the fluid temperature at the collector outlet, conclusions can be drawn about the process of solar glass fouling or glycol gelling. The simplicity of the model and the low computational demands enable such comparisons in an online mode.

Suggested Citation

  • Wiesław Zima & Łukasz Mika & Karol Sztekler, 2024. "Numerical and Experimental Determination of Selected Performance Indicators of the Liquid Flat-Plate Solar Collector under Outdoor Conditions," Energies, MDPI, vol. 17(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3454-:d:1434635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    2. Estevão, João & Lopes, José Dias, 2024. "SDG7 and renewable energy consumption: The influence of energy sources," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    3. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions," Renewable Energy, Elsevier, vol. 138(C), pages 754-763.
    4. William Quitiaquez & José Estupiñán-Campos & César Nieto-Londoño & Patricio Quitiaquez, 2023. "CFD Analysis of Heat Transfer Enhancement in a Flat-Plate Solar Collector/Evaporator with Different Geometric Variations in the Cross Section," Energies, MDPI, vol. 16(15), pages 1-15, August.
    5. Zheng, J. & Febrer, R. & Castro, J. & Kizildag, D. & Rigola, J., 2024. "A new high-performance flat plate solar collector. Numerical modelling and experimental validation," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiche, A. & El Hassar, S.M.K. & Larabi, A. & Khan, Z.A. & Khan, Z. & Aguilar, F.J. & Quiles, P.V., 2020. "Innovative overheating solution for solar thermal collector using a reflective surface included in the air gap," Renewable Energy, Elsevier, vol. 151(C), pages 355-365.
    2. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    3. Diana Isabel Berrocal & Juan Blandon Rodriguez & Maria De Los Angeles Ortega Del Rosario & Itamar Harris & Arthur M. James Rivas, 2024. "Heat Transfer Enhancements Assessment in Hot Water Generation with Phase Change Materials (PCMs): A Review," Energies, MDPI, vol. 17(10), pages 1-35, May.
    4. Ma, Ruihua & Ma, Dongyan & Ma, Ruijiang & Long, Enshen, 2022. "Theoretical and experimental analysis of temperature variation of V–Ti black ceramic solar collector," Renewable Energy, Elsevier, vol. 194(C), pages 1153-1162.
    5. García-Guendulain, Juan M. & Riesco-Ávila, José M. & Picón-Núñez, Martín, 2020. "Reducing thermal imbalances and flow nonuniformity in solar collectors through the selection of free flow area ratio," Energy, Elsevier, vol. 194(C).
    6. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Wang, Chia-Nan & Nguyen, Thi Thuy-Vy & Chiang, Chia-Chin & Le, Hoang-Dang, 2024. "Evaluating renewable energy consumption efficiency and impact factors in Asia-pacific economic cooperation countries: A new approach of DEA with undesirable output model," Renewable Energy, Elsevier, vol. 227(C).
    8. Kalo G. Traslosheros-Zavala & Ivett Zavala-Guillén & Alexis Acuña-Ramírez & Manuel Cervantes-Astorga & Daniel Sauceda-Carvajal & Francisco J. Carranza-Chávez, 2024. "Modeling of a Solar Thermal Plant to Produce Hot Water and Steam for a Brewery Factory," Energies, MDPI, vol. 17(10), pages 1-21, May.
    9. Magdalena Osińska & Atif Maqbool Khan & Jacek Kwiatkowski, 2024. "Identifying Economic Factors of Renewable Energy Consumption—A Global Perspective," Energies, MDPI, vol. 17(15), pages 1-26, July.
    10. Juan Manuel García-Guendulain & José Manuel Riesco-Avila & Francisco Elizalde-Blancas & Juan Manuel Belman-Flores & Juan Serrano-Arellano, 2018. "Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collector," Energies, MDPI, vol. 11(5), pages 1-21, April.
    11. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Zhu, T.T. & Wang, T.Y. & Liang, L., 2021. "Numerical evaluation of the thermal performance of different types of double glazing flat-plate solar air collectors," Energy, Elsevier, vol. 233(C).
    12. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    13. Liu, He & Tian, You & Liu, Jia'ao & Zhang, Dongwei & Wu, Xuehong & Li, Zengyao, 2023. "Performance analysis of solar drying system with sunlight transparent thermally insulating aerogels," Energy, Elsevier, vol. 269(C).
    14. Salari, Ali & Hakkaki-Fard, Ali, 2019. "A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 437-449.
    15. William Quitiaquez & José Estupiñán-Campos & César Nieto-Londoño & Patricio Quitiaquez, 2023. "CFD Analysis of Heat Transfer Enhancement in a Flat-Plate Solar Collector/Evaporator with Different Geometric Variations in the Cross Section," Energies, MDPI, vol. 16(15), pages 1-15, August.
    16. Piotr Bogusław Jasiński, 2021. "Numerical Study of Heat Transfer Intensification in a Circular Tube Using a Thin, Radiation-Absorbing Insert. Part 1: Thermo-Hydraulic Characteristics," Energies, MDPI, vol. 14(15), pages 1-18, July.
    17. Filipović, Petar & Dović, Damir & Ranilović, Borjan & Horvat, Ivan, 2019. "Numerical and experimental approach for evaluation of thermal performances of a polymer solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 127-139.
    18. Soto, Gonzalo Hernández, 2024. "The role of outward foreign direct investment as a filter for high energy intensity economies in the European Union," Applied Energy, Elsevier, vol. 361(C).
    19. Jamal-Abad, Milad Tajik & Saedodin, Seyfolah & Aminy, Mohammad, 2016. "Heat transfer in concentrated solar air-heaters filled with a porous medium with radiation effects: A perturbation solution," Renewable Energy, Elsevier, vol. 91(C), pages 147-154.
    20. Guillermo Martínez-Rodríguez & Héctor H. Silviano-Mendoza & Amanda L. Fuentes-Silva & Juan-Carlos Baltazar, 2024. "Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications," Energies, MDPI, vol. 17(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3454-:d:1434635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.