IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3433-d1433814.html
   My bibliography  Save this article

A Review on the Impact of Transmission Line Compensation and RES Integration on Protection Schemes

Author

Listed:
  • Ntombenhle Mazibuko

    (Department of Electrical Power Engineering, Department of Electronics and Computer Engineering, Durban University of Technology, Durban 4000, South Africa)

  • Kayode T. Akindeji

    (Department of Electrical Power Engineering, Smart Grid Research Centre, Durban University of Technology, Durban 4000, South Africa)

  • Katleho Moloi

    (Department of Electrical Power Engineering, Smart Grid Research Centre, Durban University of Technology, Durban 4000, South Africa)

Abstract

South Africa is currently experiencing an energy crisis because of a mismatch between energy supply and demand. Increasing energy demand necessitates the adequate operation of generation and transmission facilities to maintain the reliability of the power system. Transmission line compensation is used to increase the ability to transfer power, thereby enhancing system stability, voltage regulation, and reactive power balance. Also, in recent years, the introduction of renewable energy sources (RES) has proven to be effective in supporting the grid by providing additional energy. As a result, the dynamics of power systems have changed, and many developing nations are adopting the integration of renewable energy into the grid to increase the aspect ratio of the energy availability factor. While both techniques contribute to the grid’s ability to meet energy demand, they frequently introduce technical challenges that affect the stability and protection of the systems. This paper provides a comprehensive review of the challenges introduced by transmission line compensation and the integration of renewable energy, as well as the various techniques proposed in the literature to address these issues. Different compensation techniques, including fault detection, classification, and location, for compensated and uncompensated transmission lines, including those connected to renewable energy sources, are reviewed. This paper then analyzes the adaptive distance protection schemes available in the literature to mitigate the impact of compensation/integration of RES into the grid. Based on the literature reviewed, it is essential for protection engineers to understand the dynamics introduced by network topology incorporating a combination of RES and heavily compensated transmission lines.

Suggested Citation

  • Ntombenhle Mazibuko & Kayode T. Akindeji & Katleho Moloi, 2024. "A Review on the Impact of Transmission Line Compensation and RES Integration on Protection Schemes," Energies, MDPI, vol. 17(14), pages 1-29, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3433-:d:1433814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seneviratne, Chinthaka & Ozansoy, C., 2016. "Frequency response due to a large generator loss with the increasing penetration of wind/PV generation – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 659-668.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    2. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    3. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    4. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Yongbeom Son & Yonggu Ha & Gilsoo Jang, 2024. "Frequency Nadir Estimation Using the Linear Characteristics of Frequency Control in Power Systems," Energies, MDPI, vol. 17(5), pages 1-22, February.
    6. Carlos A. Platero & José A. Sánchez & Christophe Nicolet & Philippe Allenbach, 2019. "Hydropower Plants Frequency Regulation Depending on Upper Reservoir Water Level," Energies, MDPI, vol. 12(9), pages 1-15, April.
    7. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    8. Teng, Fei & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Zeng, Pingliang & Strbac, Goran, 2017. "Challenges on primary frequency control and potential solution from EVs in the future GB electricity system," Applied Energy, Elsevier, vol. 194(C), pages 353-362.
    9. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    10. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    11. Henning Thiesen & Clemens Jauch, 2021. "Application of a New Dispatch Methodology to Identify the Influence of Inertia Supplying Wind Turbines on Day-Ahead Market Sales Volumes," Energies, MDPI, vol. 14(5), pages 1-19, February.
    12. Luis Cruz & Alexander Águila Téllez & Leony Ortiz, 2023. "Optimal Generation Dispatch in Electrical Microgrids Based on Inertia Markets as a Solution to Frequency Stability," Energies, MDPI, vol. 16(22), pages 1-19, November.
    13. Kang, Byung O. & Lee, Munsu & Kim, Youngil & Jung, Jaesung, 2018. "Economic analysis of a customer-installed energy storage system for both self-saving operation and demand response program participation in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 69-83.
    14. Guillermo Martínez-Lucas & José Ignacio Sarasúa & José Ángel Sánchez-Fernández, 2018. "Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System," Energies, MDPI, vol. 11(1), pages 1-25, January.
    15. Andrey Rylov & Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov, 2021. "Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-20, August.
    16. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    17. Ratnam, Kamala Sarojini & Palanisamy, K. & Yang, Guangya, 2020. "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    18. Xiaoke Ding & Junwei Cao, 2024. "Deep and Reinforcement Learning in Virtual Synchronous Generator: A Comprehensive Review," Energies, MDPI, vol. 17(11), pages 1-20, May.
    19. Tohid Harighi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Eklas Hossain, 2018. "An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology," Energies, MDPI, vol. 11(8), pages 1-18, August.
    20. Zheng Xu, 2022. "Three Technical Challenges Faced by Power Systems in Transition," Energies, MDPI, vol. 15(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3433-:d:1433814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.