IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3386-d1432378.html
   My bibliography  Save this article

Recent Advancements in Geothermal Energy Piles Performance and Design

Author

Listed:
  • Ahmed Khalil

    (Materials Science and Engineering Program, College of Arts and Sciences in Collaboration with College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
    Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Mousa Attom

    (Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Zahid Khan

    (Department of Geotechnical Engineering, AECOM, Calgary, AB T2C 5E7, Canada)

  • Philip Virgil Astillo

    (Department of Computer Engineering, School of Engineering, University of San Carlos, Cebu 6000, Philippines)

  • Oussama M. El-Kadri

    (Materials Science and Engineering Program, College of Arts and Sciences in Collaboration with College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
    Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

Abstract

Geothermal energy piles or ground heat exchange (GHE) systems embrace a sustainable source of energy that utilizes the geothermal energy naturally found inside the ground in order to heat and/or cool buildings. GHE is a highly innovative system that consists of energy loops within foundation elements (shallow foundations or piles) through which a heat carrier fluid circulates, enabling heat extraction or storage in the ground. Despite the innovation and potential of GHE systems, there are significant challenges in harmonizing their thermal and mechanical designs due to the complex interactions involved. This review critically examines state-of-the-art design methodologies developed to address these complexities, providing insights into the most recent advancements in GHE performance and design. Key findings include innovative techniques such as advanced numerical modeling to predict thermomechanical behavior, the use of different pipe configurations to optimize heat transfer, and strategies to minimize thermal stress on the foundation. Additionally, this review identifies research gaps, including the need for more comprehensive full-scale experimental validations, the impact of soil properties on system performance, and the long-term effects of thermal cycling on pile integrity. These insights aim to contribute to a better understanding of the thermomechanical behavior of energy piles, ultimately facilitating more accurate and effective design solutions.

Suggested Citation

  • Ahmed Khalil & Mousa Attom & Zahid Khan & Philip Virgil Astillo & Oussama M. El-Kadri, 2024. "Recent Advancements in Geothermal Energy Piles Performance and Design," Energies, MDPI, vol. 17(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3386-:d:1432378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Ping & Li, Xin & Man, Yi & Fang, Zhaohong, 2011. "Heat transfer analysis of pile geothermal heat exchangers with spiral coils," Applied Energy, Elsevier, vol. 88(11), pages 4113-4119.
    2. Laveet Kumar & Md. Shouquat Hossain & Mamdouh El Haj Assad & Mansoor Urf Manoo, 2022. "Technological Advancements and Challenges of Geothermal Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(23), pages 1-18, November.
    3. Faizal, Mohammed & Bouazza, Abdelmalek & Singh, Rao M., 2016. "Heat transfer enhancement of geothermal energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 16-33.
    4. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Park, Sangwoo & Lee, Seokjae & Sung, Chihun & Choi, Hangseok, 2021. "Applicability evaluation of cast-in-place energy piles based on two-year heating and cooling operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    5. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    6. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    7. Li, Min & Lai, Alvin C.K., 2013. "Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation," Applied Energy, Elsevier, vol. 104(C), pages 510-516.
    8. Park, Sangwoo & Lee, Dongseop & Choi, Hyun-Jun & Jung, Kyoungsik & Choi, Hangseok, 2015. "Relative constructability and thermal performance of cast-in-place concrete energy pile: Coil-type GHEX (ground heat exchanger)," Energy, Elsevier, vol. 81(C), pages 56-66.
    9. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    11. Zhou, Yang & Zheng, Zhi-xiang & Zhao, Guang-si, 2022. "Analytical models for heat transfer around a single ground heat exchanger in the presence of both horizontal and vertical groundwater flow considering a convective boundary condition," Energy, Elsevier, vol. 245(C).
    12. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    13. Cui, Ping & Jia, Linrui & Zhou, Xinlei & Yang, Wenxiao & Zhang, Wenke, 2020. "Heat transfer analysis of energy piles with parallel U-Tubes," Renewable Energy, Elsevier, vol. 161(C), pages 1046-1058.
    14. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kang, Han-byul, 2014. "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects," Applied Energy, Elsevier, vol. 125(C), pages 165-178.
    15. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    16. Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.
    17. Song, Xianzhi & Shi, Yu & Li, Gensheng & Shen, Zhonghou & Hu, Xiaodong & Lyu, Zehao & Zheng, Rui & Wang, Gaosheng, 2018. "Numerical analysis of the heat production performance of a closed loop geothermal system," Renewable Energy, Elsevier, vol. 120(C), pages 365-378.
    18. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    19. Yu, Yuebin & Li, Haorong & Niu, Fuxin & Yu, Daihong, 2014. "Investigation of a coupled geothermal cooling system with earth tube and solar chimney," Applied Energy, Elsevier, vol. 114(C), pages 209-217.
    20. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3386-:d:1432378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.