IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3328-d1430353.html
   My bibliography  Save this article

Decarbonization through Active Participation of the Demand Side in Relatively Isolated Power Systems

Author

Listed:
  • Sophie Chlela

    (Centre for Applied Mathematics, Mines Paris-PSL, 06560 Valbonne, France)

  • Sandrine Selosse

    (Centre for Applied Mathematics, Mines Paris-PSL, 06560 Valbonne, France)

  • Nadia Maïzi

    (Centre for Applied Mathematics, Mines Paris-PSL, 06560 Valbonne, France)

Abstract

In the context of power system decarbonization, the demand-side strategy for increasing the share of renewable energy is studied for two constrained energy systems. This strategy, which is currently widely suggested in policies on the energy transition, would impact consumer behavior. Despite the importance of studying the latter, the focus here is on decisions regarding the type, location, and timeframe of implementing the related measures. As such, solutions must be assessed in terms of cost and feasibility, technological learning, and by considering geographical and environmental constraints. Based on techno-economic optimization, in this paper we analyze the evolution of the power system and elaborate plausible long-term trajectories in the energy systems of two European islands. The case studies, Procida in Italy and Hinnøya in Norway, are both electrically connected to the mainland by submarine cables and present issues in their power systems, which are here understood as relatively isolated power systems. Renewable energy integration is encouraged by legislative measures in Italy. Although not modeled here, they serve as a backbone for the assumptions of increasing these investments. For Procida, rooftop photovoltaics (PV) coupled with energy storage are integrated in the residential, public, and tertiary sectors. A price-based strategy is also applied reflecting the Italian electricity tariff structure. At a certain price difference between peak and off-peak, the electricity supply mix changes, favoring storage technologies and hence decreasing imports by up to 10% during peak times in the year 2050. In Norway, renewable energy resources are abundant. The analysis for Hinnøya showcases possible cross-sectoral flexibilities through electrification, leading to decarbonization. By fine-tuning electric vehicle charging tactics and leveraging Norway’s electricity pricing model, excess electricity demand peaks can be averted. The conclusions of this double-prospective study provide a comparative analysis that presents the lessons learnt and makes replicability recommendations for other territories.

Suggested Citation

  • Sophie Chlela & Sandrine Selosse & Nadia Maïzi, 2024. "Decarbonization through Active Participation of the Demand Side in Relatively Isolated Power Systems," Energies, MDPI, vol. 17(13), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3328-:d:1430353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Sloot & Nico Lehmann & Armin Ardone & Wolf Fichtner, 2023. "A Behavioral Science Perspective on Consumers' Engagement With Demand Response Programs," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 4(1), pages 1-7.
    2. Haseeb Javed & Hafiz Abdul Muqeet & Moazzam Shehzad & Mohsin Jamil & Ashraf Ali Khan & Josep M. Guerrero, 2021. "Optimal Energy Management of a Campus Microgrid Considering Financial and Economic Analysis with Demand Response Strategies," Energies, MDPI, vol. 14(24), pages 1-24, December.
    3. Drouineau, Mathilde & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2015. "Increasing shares of intermittent sources in Reunion Island: Impacts on the future reliability of power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 120-128.
    4. Selosse, Sandrine & Garabedian, Sabine & Ricci, Olivia & Maïzi, Nadia, 2018. "The renewable energy revolution of reunion island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 99-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    2. Sabine, Garabedian & Avotra, Narindranjanahary & Olivia, Ricci & Sandrine, Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Energy Policy, Elsevier, vol. 147(C).
    3. Giulia Grazioli & Sophie Chlela & Sandrine Selosse & Nadia Maïzi, 2022. "The Multi-Facets of Increasing the Renewable Energy Integration in Power Systems," Energies, MDPI, vol. 15(18), pages 1-26, September.
    4. François, Agnès & Roche, Robin & Grondin, Dominique & Benne, Michel, 2023. "Assessment of medium and long term scenarios for the electrical autonomy in island territories: The Reunion Island case study," Renewable Energy, Elsevier, vol. 216(C).
    5. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    6. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    7. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    8. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    9. Russeil, Valentin & Lo Seen, Danny & Broust, François & Bonin, Muriel & Praene, Jean-Philippe, 2023. "Food and electricity self-sufficiency trade-offs in Reunion Island: Modelling land-use change scenarios with stakeholders," Land Use Policy, Elsevier, vol. 132(C).
    10. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    11. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    12. Anna Flessa & Dimitris Fragkiadakis & Eleftheria Zisarou & Panagiotis Fragkos, 2023. "Developing an Integrated Energy–Economy Model Framework for Islands," Energies, MDPI, vol. 16(3), pages 1-32, January.
    13. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    14. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.
    15. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.
    16. Zheng, Shiyong & Shahzad, Muhammad & Asif, Hafiz Muhammad & Gao, Jing & Muqeet, Hafiz Abdul, 2023. "Advanced optimizer for maximum power point tracking of photovoltaic systems in smart grid: A roadmap towards clean energy technologies," Renewable Energy, Elsevier, vol. 206(C), pages 1326-1335.
    17. Amad Ali & Rabia Shakoor & Abdur Raheem & Hafiz Abd ul Muqeet & Qasim Awais & Ashraf Ali Khan & Mohsin Jamil, 2022. "Latest Energy Storage Trends in Multi-Energy Standalone Electric Vehicle Charging Stations: A Comprehensive Study," Energies, MDPI, vol. 15(13), pages 1-19, June.
    18. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    19. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.
    20. Dimitris Al. Katsaprakakis & Apostolos Michopoulos & Vasiliki Skoulou & Eirini Dakanali & Aggeliki Maragkaki & Stavroula Pappa & Ioannis Antonakakis & Dimitris Christakis & Constantinos Condaxakis, 2022. "A Multidisciplinary Approach for an Effective and Rational Energy Transition in Crete Island, Greece," Energies, MDPI, vol. 15(9), pages 1-49, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3328-:d:1430353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.