IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3250-d1427371.html
   My bibliography  Save this article

Evaluation of Life Cycle CO 2 Emissions for the LDR-50 Nuclear District Heating Reactor

Author

Listed:
  • Laura Sokka

    (VTT Technical Research Centre of Finland, Kivimiehentie 3, 02150 Espoo, Finland
    Current address: Finnish Environmental Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
    These authors contributed equally to this work.)

  • Heidi Kirppu

    (VTT Technical Research Centre of Finland, Kivimiehentie 3, 02150 Espoo, Finland
    These authors contributed equally to this work.)

  • Jaakko Leppänen

    (VTT Technical Research Centre of Finland, Kivimiehentie 3, 02150 Espoo, Finland
    These authors contributed equally to this work.)

Abstract

The LDR-50 low-temperature nuclear reactor is designed for the Finnish and European district heating markets, as an environmentally sustainable heating option for the 2030s. While the carbon footprint of conventional electricity-producing reactors is known to be small, there have been no comprehensive studies on the emission reduction potential when the technology is applied to the heating sector. This paper aims to fill this knowledge gap by means of life cycle assessment (LCA) analysis. The carbon footprint of the LDR-50 heating plant is evaluated, and compared to conventional heating fuels, direct electric heating, and heat pumps. The results of the analysis show that the life cycle CO 2 emissions are low, although there are still significant uncertainties related to the construction phase, due to missing data. In addition to carbon footprint, the analysis is also extended to other adverse environmental impacts. It is concluded that significant reductions in CO 2 emissions can be achieved by replacing fossil heating fuels with nuclear energy. The technology is considered a viable option alongside biofuels and heat pumps. The overall environmental impacts are low, and the production does not compete for low-carbon electricity or scarce natural resources.

Suggested Citation

  • Laura Sokka & Heidi Kirppu & Jaakko Leppänen, 2024. "Evaluation of Life Cycle CO 2 Emissions for the LDR-50 Nuclear District Heating Reactor," Energies, MDPI, vol. 17(13), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3250-:d:1427371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leurent, Martin & Da Costa, Pascal & Jasserand, Frédéric & Rämä, Miika & Persson, Urban, 2018. "Cost and climate savings through nuclear district heating in a French urban area," Energy Policy, Elsevier, vol. 115(C), pages 616-630.
    2. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    2. Amelia DIACONU & Maria-Loredana POPESCU & Sorin BURLACU & Ovidiu Cristian Andrei BUZOIANU, 2019. "Strategic Options For The Development Of Renewable Energy In The Context Of Globalization," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 1022-1029, November.
    3. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    4. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    5. Rodica Loisel & Lionel Lemiale & Silvana Mima & Adrien Bidaud, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Post-Print hal-04568072, HAL.
    6. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    7. Simon Pezzutto & Silvia Croce & Stefano Zambotti & Lukas Kranzl & Antonio Novelli & Pietro Zambelli, 2019. "Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results," Energies, MDPI, vol. 12(9), pages 1-16, May.
    8. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    10. Rämä, Miika & Leurent, Martin & Devezeaux de Lavergne, Jean-Guy, 2020. "Flexible nuclear co-generation plant combined with district heating and a large-scale heat storage," Energy, Elsevier, vol. 193(C).
    11. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    12. Côté, Elizabeth & Pons-Seres de Brauwer, Cristian, 2023. "Preferences of homeowners for heat-pump leasing: Evidence from a choice experiment in France, Germany, and Switzerland," Energy Policy, Elsevier, vol. 183(C).
    13. Boris Nérot & N Lamaison & Roland Bavière & Bruno Lacarrière & Mohamed Tahar Mabrouk, 2021. "Techno-economic relevance of absorption chillers to enhance existing 3GDH," Post-Print hal-04653769, HAL.
    14. Aksornchan Chaianong & Athikom Bangviwat & Christoph Menke & Naïm R. Darghouth, 2019. "Cost–Benefit Analysis of Rooftop PV Systems on Utilities and Ratepayers in Thailand," Energies, MDPI, vol. 12(12), pages 1-26, June.
    15. Rodrigues, Renato & Pietzcker, Robert & Fragkos, Panagiotis & Price, James & McDowall, Will & Siskos, Pelopidas & Fotiou, Theofano & Luderer, Gunnar & Capros, Pantelis, 2022. "Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in Europe," Energy, Elsevier, vol. 239(PA).
    16. Chen, Jiayang & Zheng, Wen & Kong, Ying & Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2021. "Case study on combined heat and water system for nuclear district heating in Jiaodong Peninsula," Energy, Elsevier, vol. 218(C).
    17. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    18. Badr Eddine Lebrouhi & Éric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Post-Print hal-03716839, HAL.
    19. Sánchez-García, Luis & Averfalk, Helge & Möllerström, Erik & Persson, Urban, 2023. "Understanding effective width for district heating," Energy, Elsevier, vol. 277(C).
    20. Saleh Abushamah, Hussein Abdulkareem & Skoda, Radek, 2022. "Nuclear energy for district cooling systems – Novel approach and its eco-environmental assessment method," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3250-:d:1427371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.