IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2265-d239539.html
   My bibliography  Save this article

Cost–Benefit Analysis of Rooftop PV Systems on Utilities and Ratepayers in Thailand

Author

Listed:
  • Aksornchan Chaianong

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment, PERDO, Bangkok 10140, Thailand)

  • Athikom Bangviwat

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment, PERDO, Bangkok 10140, Thailand)

  • Christoph Menke

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment, PERDO, Bangkok 10140, Thailand
    Department of Building Engineering Services, Trier University of Applied Sciences, Trier 54293, Germany)

  • Naïm R. Darghouth

    (Ernest Orlando Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA)

Abstract

Driven by falling photovoltaic (PV) installation costs and potential support policies, rooftop PV is expected to expand rapidly in Thailand. As a result, the relevant stakeholders, especially utilities, have concerns about the net economic impacts of high PV adoption. Using a cost–benefit analysis, this study quantifies the net economic impacts of rooftop PV systems on three utilities and on ratepayers in Thailand by applying nine different PV adoption scenarios with various buyback rates and annual percentages of PV cost reduction. Under Thailand’s current electricity tariff structure, Thai utilities are well-protected and able to pass all costs due to PV onto the ratepayers in terms of changes in retail rates. We find that when PV adoption is low, the net economic impacts on both the utilities and retail rates are small and the impacts on each utility depend on its specific characteristics. On the other hand, when PV adoption ranges from 9–14% in energy basis, five-year retail rate impacts become noticeable and are between 6% and 11% as compared to the projected retail rates in 2036 depending on the PV adoption level. Thus, it is necessary for Thailand to make tradeoffs among the stakeholders and maximize the benefits of rooftop PV adoption.

Suggested Citation

  • Aksornchan Chaianong & Athikom Bangviwat & Christoph Menke & Naïm R. Darghouth, 2019. "Cost–Benefit Analysis of Rooftop PV Systems on Utilities and Ratepayers in Thailand," Energies, MDPI, vol. 12(12), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2265-:d:239539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richter, Mario, 2012. "Utilities’ business models for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2483-2493.
    2. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Quantifying the financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 80(C), pages 133-144.
    3. Pikas, Ergo & Kurnitski, Jarek & Thalfeldt, Martin & Koskela, Lauri, 2017. "Cost-benefit analysis of nZEB energy efficiency strategies with on-site photovoltaic generation," Energy, Elsevier, vol. 128(C), pages 291-301.
    4. Tongsopit, Sopitsuda & Junlakarn, Siripha & Wibulpolprasert, Wichsinee & Chaianong, Aksornchan & Kokchang, Phimsupha & Hoang, Nghia Vu, 2019. "The economics of solar PV self-consumption in Thailand," Renewable Energy, Elsevier, vol. 138(C), pages 395-408.
    5. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Regulatory and ratemaking approaches to mitigate financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 85(C), pages 115-125.
    6. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    7. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    8. Thakur, Jagruti & Rauner, Sebastian & Darghouth, Naïm R. & Chakraborty, Basab, 2018. "Exploring the impact of increased solar deployment levels on residential electricity bills in India," Renewable Energy, Elsevier, vol. 120(C), pages 512-523.
    9. Richter, Mario, 2013. "German utilities and distributed PV: How to overcome barriers to business model innovation," Renewable Energy, Elsevier, vol. 55(C), pages 456-466.
    10. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    11. Chaianong, Aksornchan & Tongsopit, Sopitsuda & Bangviwat, Athikom & Menke, Christoph, 2019. "Bill saving analysis of rooftop PV customers and policy implications for Thailand," Renewable Energy, Elsevier, vol. 131(C), pages 422-434.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castaneda, Monica & Franco, Carlos J. & Dyner, Isaac, 2017. "Evaluating the effect of technology transformation on the electricity utility industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 341-351.
    2. Cole, Wesley & Lewis, Haley & Sigrin, Ben & Margolis, Robert, 2016. "Interactions of rooftop PV deployment with the capacity expansion of the bulk power system," Applied Energy, Elsevier, vol. 168(C), pages 473-481.
    3. Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
    4. Chaianong, Aksornchan & Bangviwat, Athikom & Menke, Christoph & Breitschopf, Barbara & Eichhammer, Wolfgang, 2020. "Customer economics of residential PV–battery systems in Thailand," Renewable Energy, Elsevier, vol. 146(C), pages 297-308.
    5. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    6. Say, Kelvin & John, Michele & Dargaville, Roger & Wills, Raymond T., 2018. "The coming disruption: The movement towards the customer renewable energy transition," Energy Policy, Elsevier, vol. 123(C), pages 737-748.
    7. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    8. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    9. Helms, Thorsten, 2016. "Asset transformation and the challenges to servitize a utility business model," Energy Policy, Elsevier, vol. 91(C), pages 98-112.
    10. Say, Kelvin & John, Michele & Dargaville, Roger, 2019. "Power to the people: Evolutionary market pressures from residential PV battery investments in Australia," Energy Policy, Elsevier, vol. 134(C).
    11. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Regulatory and ratemaking approaches to mitigate financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 85(C), pages 115-125.
    12. Nikolaidis, Alexandros I. & Charalambous, Charalambos A., 2017. "Hidden financial implications of the net energy metering practice in an isolated power system: Critical review and policy insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 706-717.
    13. L. (Lisa B.) Ryan & Sarah La Monaca & Linda Mastrandrea & Petr Spodniak, 2018. "Harnessing Electricity Retail Tariffs to Support Climate Change Policy," Working Papers 201822, School of Economics, University College Dublin.
    14. Karakaya, Emrah & Nuur, Cali & Hidalgo, Antonio, 2016. "Business model challenge: Lessons from a local solar company," Renewable Energy, Elsevier, vol. 85(C), pages 1026-1035.
    15. Ossenbrink, Jan, 2017. "How feed-in remuneration design shapes residential PV prosumer paradigms," Energy Policy, Elsevier, vol. 108(C), pages 239-255.
    16. Richter, Mario, 2013. "Business model innovation for sustainable energy: German utilities and renewable energy," Energy Policy, Elsevier, vol. 62(C), pages 1226-1237.
    17. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    18. Satchwell, Andrew J. & Cappers, Peter A., 2018. "Recent developments in competition and innovation for regulated electric utilities," Utilities Policy, Elsevier, vol. 55(C), pages 110-114.
    19. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    20. Felipe Barroco Fontes Cunha & Maria Cândida Arrais de Miranda Mousinho & Luciana Carvalho & Fábio Fernandes & Celso Castro & Marcelo Santana Silva & Ednildo Andrade Torres, 2021. "Renewable energy planning policy for the reduction of poverty in Brazil: lessons from Juazeiro," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9792-9810, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2265-:d:239539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.