IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3201-d1425429.html
   My bibliography  Save this article

The Modeling of Concentrators for Solar Photovoltaic Systems

Author

Listed:
  • Ana Francisca Machado da Costa

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal)

  • Ricardo A. Marques Lameirinhas

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
    Instituto de Telecomunicações, 1049-001 Lisbon, Portugal)

  • Catarina Pinho Correia Valério Bernardo

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
    Instituto de Telecomunicações, 1049-001 Lisbon, Portugal)

  • João Paulo Neto Torres

    (Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
    Academia Militar/CINAMIL, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal)

  • Marcelino Santos

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
    Instituto de Engenharia de Sistemas e Computadores-Investigação e Desenvolvimento-INESC-ID, 1000-029 Lisbon, Portugal)

Abstract

Concentrating photovoltaic (CPV) systems have emerged as a transformative technology that incorporates radiation concentrators into the photovoltaic system to enable radiation to be concentrated onto a receiver—the solar cells. Different concentrator configurations have different impacts on the performance of the solar photovoltaic system. This research work aims to analyze the impact of different concentrators, comparing and identifying the most efficient structures for capturing and concentrating solar energy. Aiming at a deep analysis and comparison among concentrators shapes, this research work presents a unique investigation and revision among different structures such as flat, triangular, LFR, and parabolic concentrators. Moreover, since, in the UV–visible–NIR region, metals’ reflectance varies with the incident wavelength, five metals were considered: aluminum, gold, platinum, copper, and silver. Additionally, the research focuses on studying the effects of parameters critical to the quality of the concentration on the power obtained and on the uniformity of the radiation distribution on the surface of the receiver, as well as on the number of solar rays that reach the receiver. The power on the receiver increases proportionally with the number of reflector concentrators in the system and their reflectance. For parabolic geometries, the optical efficiency is affected by the receiver’s shadow on the concentrator and, in the case of the LFR, by a non-ideal alignment of the reflectors in relation to the receiver. However, in parabolic concentrator geometries, uniformity is usually lower, since in these configurations, the radiation is focused on specific areas of the receiver, usually the central zone.

Suggested Citation

  • Ana Francisca Machado da Costa & Ricardo A. Marques Lameirinhas & Catarina Pinho Correia Valério Bernardo & João Paulo Neto Torres & Marcelino Santos, 2024. "The Modeling of Concentrators for Solar Photovoltaic Systems," Energies, MDPI, vol. 17(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3201-:d:1425429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    2. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    3. Motte, F. & Notton, G. & Lamnatou, Chr & Cristofari, C. & Chemisana, D., 2019. "Numerical study of PCM integration impact on overall performances of a highly building-integrated solar collector," Renewable Energy, Elsevier, vol. 137(C), pages 10-19.
    4. Fatma M. Shaaban & M. F. Abdel-Salam & Khaled Y. Farroh & Han Wang & Mohamed F. Atia, 2024. "Thermal Performance Analysis of an Indirect Solar Cooker Using a Graphene Oxide Nanofluid," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    5. Juanicó, Luis E. & Di Lalla, Nicolás & González, Alejandro D., 2017. "Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 187-195.
    6. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
    7. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    8. Wu, Sean & Cheng, Chin-Hsiang & Hsiao, Yu-Jen & Juang, Rei-Cheng & Wen, Wen-Fu, 2016. "Fe2O3 films on stainless steel for solar absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 574-580.
    9. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    10. Sreelakshmi, Kavuthimadathil & Ramamurthy, K., 2022. "Review on fibre-optic-based daylight enhancement systems in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    12. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    13. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2020. "Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators," Energy, Elsevier, vol. 194(C).
    14. Kalogirou, S.A. & Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2019. "Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and economic optimization for hot water production in different climates," Renewable Energy, Elsevier, vol. 136(C), pages 632-644.
    15. Natividade, Pablo Sampaio Gomes & de Moraes Moura, Gabriel & Avallone, Elson & Bandarra Filho, Enio Pedone & Gelamo, Rogério Valentim & Gonçalves, Júlio Cesar de Souza Inácio, 2019. "Experimental analysis applied to an evacuated tube solar collector equipped with parabolic concentrator using multilayer graphene-based nanofluids," Renewable Energy, Elsevier, vol. 138(C), pages 152-160.
    16. Fathabadi, Hassan, 2019. "Two novel methods for converting the waste heat of PV modules caused by temperature rise into electric power," Renewable Energy, Elsevier, vol. 142(C), pages 543-551.
    17. Selikhov, Yuriy & Klemeš, Jiří Jaromír & Kapustenko, Petro & Arsenyeva, Olga, 2022. "The study of flat plate solar collector with absorbing elements from a polymer material," Energy, Elsevier, vol. 256(C).
    18. Fathabadi, Hassan, 2019. "Replacing commercial thermoelectric generators with a novel electrochemical device in low-grade heat applications," Energy, Elsevier, vol. 174(C), pages 932-937.
    19. Kaloudis, E. & Papanicolaou, E. & Belessiotis, V., 2016. "Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model," Renewable Energy, Elsevier, vol. 97(C), pages 218-229.
    20. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3201-:d:1425429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.