IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3133-d1422020.html
   My bibliography  Save this article

Performance Evaluation and Working Fluid Screening of Direct Vapor Generation for Solar ORC Using Low-Global Warming Potential (GWP) Working Fluids

Author

Listed:
  • Youtao Jiang

    (State Grid Tianjin Power Company, Tianjin 300350, China)

  • Xunda Zhang

    (State Grid Tianjin Electric Power Company Electric Power Scientific Research Institute, Tianjin 300350, China)

  • Zhengao Zhang

    (State Grid Tianjin Power Company, Tianjin 300350, China)

  • Lei Hao

    (State Grid Tianjin Power Company, Tianjin 300350, China)

  • Zhaozhi Cao

    (State Grid Tianjin Power Company, Tianjin 300350, China)

  • Shuyang Li

    (State Grid Tianjin Electric Power Company Electric Power Scientific Research Institute, Tianjin 300350, China)

  • Bowen Guo

    (State Grid Tianjin Electric Power Company Electric Power Scientific Research Institute, Tianjin 300350, China)

  • Yawen Zheng

    (State Grid Tianjin Electric Power Company Electric Power Scientific Research Institute, Tianjin 300350, China)

  • Chunhai Dong

    (State Grid Tianjin Power Company Material Company, Tianjin 300350, China)

  • Li Zhao

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China)

Abstract

Traditional working fluids used in direct vapor generation for solar organic Rankine cycle (DVG-ORC) systems have a high global warming potential (GWP), making it imperative to find environmentally friendly alternative working fluids for these systems. This paper evaluates the performance of the DVG-ORC system under different operating conditions. By comparing the results of traditional working fluids with those of low-GWP fluids, the feasibility of using low-GWP fluids as alternative working fluids is explored. Additionally, to screen the working fluids suitable for this system further, the system is optimized with net output power as the objective function. The results show that evaporation temperature has different impacts on system performance. R245ca and R1336mzz(Z) exhibit higher net output power at different evaporation temperatures, with R1336mzz(Z) only reducing it by 3.73–5.26% compared to R245ca. However, an increase in condensation temperature negatively affects system performance, leading to a decrease in net output power and various efficiencies. Net output power increases with an increase in mass flow rate, indicating that higher mass flow rates can enhance system performance. The optimization results show that the net output power of low-GWP working fluid R1336mzz(Z) decreases by only 3.44% compared to R245ca, which achieves the maximum net output power. Moreover, among low-GWP working fluids, R1336mzz(Z) demonstrates the highest ORC efficiency and system efficiency, making it the most suitable working fluid for the DVG-ORC system due to its environmental friendliness and safety.

Suggested Citation

  • Youtao Jiang & Xunda Zhang & Zhengao Zhang & Lei Hao & Zhaozhi Cao & Shuyang Li & Bowen Guo & Yawen Zheng & Chunhai Dong & Li Zhao, 2024. "Performance Evaluation and Working Fluid Screening of Direct Vapor Generation for Solar ORC Using Low-Global Warming Potential (GWP) Working Fluids," Energies, MDPI, vol. 17(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3133-:d:1422020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    2. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    3. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    4. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    5. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiyaee, Soroush & Khalilmoghadam, Pooria & Behshad Shafii, Mohammad & Moshfegh, Alireza Z. & Hu, Mingke, 2022. "Investigation of a radiative sky cooling module using phase change material as the energy storage," Applied Energy, Elsevier, vol. 321(C).
    2. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    3. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    4. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    5. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    6. Fabien Marty & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2019. "Exergy Analysis and Optimization of a Combined Heat and Power Geothermal Plant," Energies, MDPI, vol. 12(6), pages 1-22, March.
    7. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    8. Anahita Moharamian & Saeed Soltani & Faramarz Ranjbar & Mortaza Yari & Marc A Rosen, 2017. "Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit," Energy & Environment, , vol. 28(7), pages 725-743, November.
    9. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    10. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    11. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    12. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    13. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    14. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    15. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    16. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    17. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    18. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Ma, Chenshuo & Zhang, Yifei & Ma, Keni & Li, Chanyun, 2023. "Study on the relationship between service scale and investment cost of energy service stations," Energy, Elsevier, vol. 269(C).
    20. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3133-:d:1422020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.