IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3110-d1421035.html
   My bibliography  Save this article

Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System

Author

Listed:
  • Julián Gómez

    (Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal)

  • Rui Castro

    (INESC-ID/IST, University of Lisbon, 1649-004 Lisboa, Portugal)

Abstract

Accelerating the transition to a cleaner global energy system is essential for tackling the climate crisis, and green hydrogen energy systems hold significant promise for integrating renewable energy sources. This paper offers a thorough evaluation of green hydrogen’s potential as a groundbreaking alternative to achieve near-zero greenhouse gas (GHG) emissions within a renewable energy framework. The paper explores current technological options and assesses the industry’s present status alongside future challenges. It also includes an economic analysis to gauge the feasibility of integrating green hydrogen, providing a critical review of the current and future expectations for the levelized cost of hydrogen (LCOH). Depending on the geographic location and the technology employed, the LCOH for green hydrogen can range from as low as EUR 1.12/kg to as high as EUR 16.06/kg. Nonetheless, the findings suggest that green hydrogen could play a crucial role in reducing GHG emissions, particularly in hard-to-decarbonize sectors. A target LCOH of approximately EUR 1/kg by 2050 seems attainable, in some geographies. However, there are still significant hurdles to overcome before green hydrogen can become a cost-competitive alternative. Key challenges include the need for further technological advancements and the establishment of hydrogen policies to achieve cost reductions in electrolyzers, which are vital for green hydrogen production.

Suggested Citation

  • Julián Gómez & Rui Castro, 2024. "Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System," Energies, MDPI, vol. 17(13), pages 1-41, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3110-:d:1421035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Superchi, Francesco & Mati, Alessandro & Carcasci, Carlo & Bianchini, Alessandro, 2023. "Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking," Applied Energy, Elsevier, vol. 342(C).
    3. Viviana Negro & Michel Noussan & David Chiaramonti, 2023. "The Potential Role of Ammonia for Hydrogen Storage and Transport: A Critical Review of Challenges and Opportunities," Energies, MDPI, vol. 16(17), pages 1-19, August.
    4. Lucas, Tiago R. & Ferreira, Ana F. & Santos Pereira, R.B. & Alves, Marco, 2022. "Hydrogen production from the WindFloat Atlantic offshore wind farm: A techno-economic analysis," Applied Energy, Elsevier, vol. 310(C).
    5. Qusay Hassan & Imad Saeed Abdulrahman & Hayder M. Salman & Olushola Tomilayo Olapade & Marek Jaszczur, 2023. "Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System," Energies, MDPI, vol. 16(2), pages 1-20, January.
    6. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    7. Zhang, Hongsheng & Xiong, Peizhi & Yang, Shangzhao & Yu, Jinna, 2023. "Renewable energy utilization, green finance and agricultural land expansion in China," Resources Policy, Elsevier, vol. 80(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    2. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    3. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    4. Khusniddin Alikulov & Zarif Aminov & La Hoang Anh & Tran Dang Xuan & Wookyung Kim, 2024. "Comparative Technical and Economic Analyses of Hydrogen-Based Steel and Power Sectors," Energies, MDPI, vol. 17(5), pages 1-30, March.
    5. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    6. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    7. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    8. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    10. Jin, Cheng & Luo, Shuangshuang & Sun, Kehan, 2023. "Energy Resources trade and investments for green growth: The case of Countries in the Asia-Pacific Economic Cooperation," Resources Policy, Elsevier, vol. 82(C).
    11. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    12. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    13. Torsten Clemens & Martin Hunyadi-Gall & Andreas Lunzer & Vladislav Arekhov & Martin Datler & Albert Gauer, 2024. "Wind–Photovoltaic–Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage," Energies, MDPI, vol. 17(22), pages 1-26, November.
    14. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    16. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    17. Leonhard Povacz & Ramchandra Bhandari, 2023. "Analysis of the Levelized Cost of Renewable Hydrogen in Austria," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    18. Jhang, Syu-Ruei & Lin, Yuan-Chung & Chen, Kang-Shin & Lin, Sheng-Lun & Batterman, Stuart, 2020. "Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen," Energy, Elsevier, vol. 209(C).
    19. Ehrenstein, Michael & Galán-Martín, Ángel & Tulus, Victor & Guillén-Gosálbez, Gonzalo, 2020. "Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK," Applied Energy, Elsevier, vol. 276(C).
    20. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3110-:d:1421035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.