IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3085-d1420193.html
   My bibliography  Save this article

Multi-Objective Optimization of an Energy Community Powered by a Distributed Polygeneration System

Author

Listed:
  • Ronelly José De Souza

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
    GITSE-I3A, Department of Mechanical Engineering, University of Zaragoza, 50009 Zaragoza, Spain)

  • Mauro Reini

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Luis M. Serra

    (GITSE-I3A, Department of Mechanical Engineering, University of Zaragoza, 50009 Zaragoza, Spain)

  • Miguel A. Lozano

    (GITSE-I3A, Department of Mechanical Engineering, University of Zaragoza, 50009 Zaragoza, Spain)

  • Emanuele Nadalon

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Melchiorre Casisi

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

Abstract

This paper presents a multi-objective optimization model for the integration of polygeneration systems into energy communities (ECs), by analyzing a case study. The concept of ECs is increasingly seen as beneficial for reducing global energy consumption and greenhouse gas emissions. Polygeneration systems have the potential to play a crucial role in this context, since they are known for producing multiple energy services from a single energy resource, besides the possibility of being fed also by renewable energy sources. However, optimizing the configuration and operation of these systems within ECs presents complex challenges due to the variety of technologies involved, their interactions, and the dynamic behavior of buildings. Therefore, the aim of this work is developing a mathematical model using a mixed integer linear programming (MILP) algorithm to optimally design and operate polygeneration systems integrated into ECs. The model is applied to a case study of an EC comprising nine buildings in a small city in the northeast of Italy. The work rests on the single- and multi-objective optimization of the polygeneration systems taking into account the sharing of electricity among the buildings (both self-produced and/or the purchased from the grid), as well as the sharing of heating and cooling between the buildings through a district heating and cooling network (DHCN). The main results from the EC case study show the possibility of reducing the total annual CO 2 emissions by around 24.3% (about 1.72 kt CO 2 /year) while increasing the total annual costs by 1.9% (about 0.09 M€/year) or reducing the total annual costs by 31.9% (about 1.47 M€/year) while increasing the total annual CO 2 emissions by 2.2% (about 0.16 kt CO 2 /year). The work developed within this research can be adapted to different case studies, such as in the residential–commercial buildings and industrial sectors. Therefore, the model resulting from this work constitutes an effective tool to optimally design and operate polygeneration systems integrated into ECs.

Suggested Citation

  • Ronelly José De Souza & Mauro Reini & Luis M. Serra & Miguel A. Lozano & Emanuele Nadalon & Melchiorre Casisi, 2024. "Multi-Objective Optimization of an Energy Community Powered by a Distributed Polygeneration System," Energies, MDPI, vol. 17(13), pages 1-36, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3085-:d:1420193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
    2. Joeri Rogelj & Gunnar Luderer & Robert C. Pietzcker & Elmar Kriegler & Michiel Schaeffer & Volker Krey & Keywan Riahi, 2015. "Energy system transformations for limiting end-of-century warming to below 1.5 °C," Nature Climate Change, Nature, vol. 5(6), pages 519-527, June.
    3. Bartolini, Andrea & Carducci, Francesco & Muñoz, Carlos Boigues & Comodi, Gabriele, 2020. "Energy storage and multi energy systems in local energy communities with high renewable energy penetration," Renewable Energy, Elsevier, vol. 159(C), pages 595-609.
    4. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    5. Pina, Eduardo A. & Lozano, Miguel A. & Ramos, José C. & Serra, Luis M., 2020. "Tackling thermal integration in the synthesis of polygeneration systems for buildings," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    2. Patrycjusz Zarębski & Dominik Katarzyński, 2023. "A Theoretical Framework for a Local Energy Innovation System Based on the Renewable Energy Case of Poland," Energies, MDPI, vol. 16(9), pages 1-24, April.
    3. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
    4. Shoaib Ahmed & Amjad Ali & Alessandro Ciocia & Antonio D’Angola, 2024. "Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview," Energies, MDPI, vol. 17(13), pages 1-40, June.
    5. Simoiu, Mircea Stefan & Fagarasan, Ioana & Ploix, Stéphane & Calofir, Vasile, 2022. "Modeling the energy community members’ willingness to change their behaviour with multi-agent systems: A stochastic approach," Renewable Energy, Elsevier, vol. 194(C), pages 1233-1246.
    6. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    7. Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
    8. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Wei Chen & Yongle Tian & Kaiming Zheng & Nana Wan, 2023. "Influences of mechanisms on investment in renewable energy storage equipment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12569-12595, November.
    11. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    12. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    13. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    14. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    16. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    17. Lorenzo De Vidovich & Luca Tricarico & Matteo Zulianello, 2023. "How Can We Frame Energy Communities’ Organisational Models? Insights from the Research ‘Community Energy Map’ in the Italian Context," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    18. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    19. Tiziano Dalla Mora & Lorenzo Teso & Laura Carnieletto & Angelo Zarrella & Piercarlo Romagnoni, 2021. "Comparative Analysis between Dynamic and Quasi-Steady-State Methods at an Urban Scale on a Social-Housing District in Venice," Energies, MDPI, vol. 14(16), pages 1-22, August.
    20. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3085-:d:1420193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.