IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2986-d1416653.html
   My bibliography  Save this article

Smart Operation Control of Power and Heat Demands in Active Distribution Grids Leveraging Energy Flexibility

Author

Listed:
  • Rakesh Sinha

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Sanjay K. Chaudhary

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Birgitte Bak-Jensen

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Hessam Golmohamadi

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Demand flexibility plays a crucial role in mitigating the intermittency of renewable power sources. This paper focuses on an active distribution grid that incorporates flexible heat and electric demands, specifically heat pumps (HPs) and electric vehicles (EVs). Additionally, it addresses photovoltaic (PV) power generation facilities and electrical batteries to enhance demand flexibility. To exploit demand flexibility from both heat and electric demand, along with the integration of PVs and batteries, Control and Communication Mechanisms (CCMs) are formulated. These CCMs integrate demand flexibility into the distribution grids to obtain economic benefits for private households and, at the same time, facilitate voltage control. Concerning EVs, the paper discusses voltage-based droop control, scheduled charging, priority charging, and up-/down-power regulation to optimize the charging and discharging operations. For heat demands, the on-off operation of the HPs integrated with phase change material (PCM) storage is optimized to unlock heat-to-power flexibility. The HP controllers aim to ensure as much self-consumption as possible and provide voltage support for the distribution grid while ensuring the thermal comfort of residents. Finally, the developed CCMs are implemented on a small and representative community of an active distribution grid with eight houses using Power Factory software and DIgSILENT simulation language (DSL). This scalable size of the active distribution network facilitates the careful study of symbiotic interaction among the flexible load, generation, and different houses thoroughly. The simulation results confirm that the integration of flexible demands into the grid using the designed CCMs results in the grid benefiting from stabilized voltage control, especially during peak demand hours.

Suggested Citation

  • Rakesh Sinha & Sanjay K. Chaudhary & Birgitte Bak-Jensen & Hessam Golmohamadi, 2024. "Smart Operation Control of Power and Heat Demands in Active Distribution Grids Leveraging Energy Flexibility," Energies, MDPI, vol. 17(12), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2986-:d:1416653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Xianwen & Xia, Mingchao & Chiang, Hsiao-Dong, 2018. "Coordinated sectional droop charging control for EV aggregator enhancing frequency stability of microgrid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 210(C), pages 936-943.
    2. Rezaeimozafar, Mostafa & Duffy, Maeve & Monaghan, Rory F.D. & Barrett, Enda, 2024. "A hybrid heuristic-reinforcement learning-based real-time control model for residential behind-the-meter PV-battery systems," Applied Energy, Elsevier, vol. 355(C).
    3. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. You, Zhengjie & Lumpp, Sebastian Dirk & Doepfert, Markus & Tzscheutschler, Peter & Goebel, Christoph, 2024. "Leveraging flexibility of residential heat pumps through local energy markets," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Portilla-Paveri, Manuel & Cariaga, Denise & Negrete-Pincetic, Matías & Lorca, Álvaro & Anjos, Miguel F., 2024. "A long-term generation and transmission expansion planning model considering desalination flexibility and coordination: A Chilean case study," Applied Energy, Elsevier, vol. 371(C).
    2. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    4. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    5. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    6. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    7. Wojciech Lewicki & Hasan Huseyin Coban & Jacek Wróbel, 2024. "Integration of Electric Vehicle Power Supply Systems—Case Study Analysis of the Impact on a Selected Urban Network in Türkiye," Energies, MDPI, vol. 17(14), pages 1-15, July.
    8. Arabzadeh, Vahid & Miettinen, Panu & Kotilainen, Titta & Herranen, Pasi & Karakoc, Alp & Kummu, Matti & Rautkari, Lauri, 2023. "Urban vertical farming with a large wind power share and optimised electricity costs," Applied Energy, Elsevier, vol. 331(C).
    9. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    10. Wei Qiu & Kaiqi Sun & Huangqing Xiao, 2022. "Advances in Urban Power Distribution System," Energies, MDPI, vol. 15(19), pages 1-4, October.
    11. Rayhane Koubaa & Yeliz Yoldas & Selcuk Goren & Lotfi Krichen & Ahmet Onen, 2021. "Implementation of cost benefit analysis of vehicle to grid coupled real Micro-Grid by considering battery energy wear: Practical study case," Energy & Environment, , vol. 32(7), pages 1292-1314, November.
    12. Cui, Feifei & An, Dou & Xi, Huan, 2024. "Integrated energy hub dispatch with a multi-mode CAES–BESS hybrid system: An option-based hierarchical reinforcement learning approach," Applied Energy, Elsevier, vol. 374(C).
    13. Maślak, Grzegorz & Orłowski, Przemysław, 2024. "Operational optimisation of a microgrid using non-stationary hybrid switched model predictive control with virtual storage-based demand management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    14. Berg, Kjersti & Foslie, Sverre Stefanussen & Farahmand, Hossein, 2024. "Industrial energy communities: Energy storage investment, grid impact and cost distribution," Applied Energy, Elsevier, vol. 373(C).
    15. Junhyung Kim & Jinho Kim & Hwanmin Jeong, 2022. "Key Parameters for Economic Valuation of V2G Applied to Ancillary Service: Data-Driven Approach," Energies, MDPI, vol. 15(23), pages 1-12, November.
    16. Yuxin Wen & Peixiao Fan & Jia Hu & Song Ke & Fuzhang Wu & Xu Zhu, 2022. "An Optimal Scheduling Strategy of a Microgrid with V2G Based on Deep Q-Learning," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    17. Markus Doepfert & Soner Candas & Hermann Kraus & Peter Tzscheutschler & Thomas Hamacher, 2024. "Assessing the techno-economic benefits of LEMs for different grid topologies and prosumer shares," Papers 2410.13330, arXiv.org.
    18. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Chao-Tsung Ma, 2019. "System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review," Energies, MDPI, vol. 12(21), pages 1-22, November.
    20. Jayalakshmi N. Sabhahit & Sanjana Satish Solanke & Vinay Kumar Jadoun & Hasmat Malik & Fausto Pedro García Márquez & Jesús María Pinar-Pérez, 2022. "Contingency Analysis of a Grid Connected EV's for Primary Frequency Control of an Industrial Microgrid Using Efficient Control Scheme," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2986-:d:1416653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.