IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2679-d1406502.html
   My bibliography  Save this article

Stimulating Methane Production from Poultry Manure Digest with Sewage Sludge and Organic Waste by Thermal Pretreatment and Adding Iron or Sodium Hydroxide

Author

Listed:
  • Anna Jasińska

    (Department of Environmental Engineering and Biotechnology, Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

  • Anna Grosser

    (Department of Environmental Engineering and Biotechnology, Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

  • Erik Meers

    (Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium)

  • Dagmara Piłyp

    (Department of Environmental Engineering and Biotechnology, Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

Abstract

The European Union’s energy policy favors increasing the share of renewable energy in total energy production. In this context, the co-digestion of various waste streams seems an interesting option. This study aimed to determine the effect of selected pretreatment methods on the efficiency and kinetics of the co-digestion process of poultry manure with sewage sludge and organic waste. This research was carried out in four stages: (1) the selection of the third component of the co-digestion mixture; (2) the determination of the most favorable inoculum-to-substrate ratio for the co-digestion mixture; (3) the selection of the most favorable pretreatment parameters based on changes in volatile fatty acids, ammonium nitrogen, extracellular polymers substances (EPS) and non-purgeable organic carbon (NPOC); and (4) the evaluation of anaerobic co-digestion based on the result of the BMP tests and kinetic studies. All the pretreatment methods increased the degree of organic matter liquefaction as measured by the NPOC changes. Waste with a high fat content showed the highest methane potential. The addition of grease trap sludge to feedstock increased methane yield from 320 mL/g VS add to 340 mL/g VS add . An optimal inoculum-to-substrate ratio was 2. The pretreatment methods, especially the thermochemical one with NaOH, increased the liquefaction of organic matter and the methane yield, which increased from 340 mL/g VS add to 501 mL/g VS add (trial with 4.5 g/L NaoH).

Suggested Citation

  • Anna Jasińska & Anna Grosser & Erik Meers & Dagmara Piłyp, 2024. "Stimulating Methane Production from Poultry Manure Digest with Sewage Sludge and Organic Waste by Thermal Pretreatment and Adding Iron or Sodium Hydroxide," Energies, MDPI, vol. 17(11), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2679-:d:1406502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    2. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    3. Izabela Konkol & Lesław Świerczek & Adam Cenian, 2023. "Chicken Manure Pretreatment for Enhancing Biogas and Methane Production," Energies, MDPI, vol. 16(14), pages 1-13, July.
    4. Lei Huang & Yinie Jin & Danheng Zhou & Linxin Liu & Shikun Huang & Yaqi Zhao & Yucheng Chen, 2022. "A Review of the Role of Extracellular Polymeric Substances (EPS) in Wastewater Treatment Systems," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    5. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    6. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    3. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    4. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    5. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    6. Xu, Xiaodong & Sielicki, Krzysztof & Min, Jiakang & Li, Jiaxin & Hao, Chuncheng & Wen, Xin & Chen, Xuecheng & Mijowska, Ewa, 2022. "One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 185(C), pages 187-195.
    7. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    8. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    9. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    10. González-Arias, Judith & González-Castaño, Miriam & Sánchez, Marta Elena & Cara-Jiménez, Jorge & Arellano-García, Harvey, 2022. "Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction," Renewable Energy, Elsevier, vol. 182(C), pages 443-451.
    11. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek, 2024. "Optimisation of Biogas Production in the Co-Digestion of Pre-Hydrodynamically Cavitated Aerobic Granular Sludge with Waste Fats," Energies, MDPI, vol. 17(4), pages 1-16, February.
    12. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    13. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    14. Grzegorz Pełka & Marta Jach-Nocoń & Marcin Paprocki & Artur Jachimowski & Wojciech Luboń & Adam Nocoń & Mateusz Wygoda & Paweł Wyczesany & Przemysław Pachytel & Tomasz Mirowski, 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers," Energies, MDPI, vol. 16(4), pages 1-18, February.
    15. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.
    16. Rhee, Chaeyoung & Park, Sung-Gwan & Yu, Sung Il & Dalantai, Tergel & Shin, Juhee & Chae, Kyu-Jung & Shin, Seung Gu, 2023. "Mapping microbial dynamics in anaerobic digestion system linked with organic composition of substrates: Protein and lipid," Energy, Elsevier, vol. 275(C).
    17. Dauren A. Yessengaliyev & Yerlan U. Zhumagaliyev & Adilbek A. Tazhibayev & Zhomart A. Bekbossynov & Zhadyrassyn S. Sarkulova & Gulya A. Issengaliyeva & Zheniskul U. Zhubandykova & Viktor V. Semenikhin, 2024. "Energy Efficiency Trends in Petroleum Extraction: A Bibliometric Study," Energies, MDPI, vol. 17(12), pages 1-14, June.
    18. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    19. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    20. Siti Rokhiyah Ahmad Usuldin & Zul Ilham & Adi Ainurzaman Jamaludin & Rahayu Ahmad & Wan Abd Al Qadr Imad Wan-Mohtar, 2023. "Enhancing Biomass-Exopolysaccharides Production of Lignosus rhinocerus in a High-Scale Stirred-Tank Bioreactor and Its Potential Lipid as Bioenergy," Energies, MDPI, vol. 16(5), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2679-:d:1406502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.