IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2494-d1399634.html
   My bibliography  Save this article

Energy Analysis of Waste Heat Recovery Using Supercritical CO 2 Brayton Cycle for Series Hybrid Electric Vehicles

Author

Listed:
  • Gabriel Mocanu

    (Thermal System and Automotive Department, “Dunărea de Jos” Universitaty of Galați, 800008 Galati, Romania)

  • Cristian Iosifescu

    (Thermal System and Automotive Department, “Dunărea de Jos” Universitaty of Galați, 800008 Galati, Romania)

  • Ion V. Ion

    (Thermal System and Automotive Department, “Dunărea de Jos” Universitaty of Galați, 800008 Galati, Romania)

  • Florin Popescu

    (Thermal System and Automotive Department, “Dunărea de Jos” Universitaty of Galați, 800008 Galati, Romania)

  • Michael Frătița

    (Thermal System and Automotive Department, “Dunărea de Jos” Universitaty of Galați, 800008 Galati, Romania)

  • Robert Mădălin Chivu

    (Thermal System and Automotive Department, “Dunărea de Jos” Universitaty of Galați, 800008 Galati, Romania)

Abstract

Waste heat recovery from exhaust gas is one of the most convenient methods to save energy in internal combustion engine-driven vehicles. This paper aims to investigate a reduction in waste heat from the exhaust gas of an internal combustion engine of a serial Diesel–electric hybrid bus by recovering part of the heat and converting it into useful power with the help of a split-flow supercritical CO 2 (sCO 2 ) recompression Brayton cycle. It can recover 17.01 kW of the total 33.47 kW of waste heat contained in exhaust gas from a 151 kW internal combustion engine. The thermal efficiency of the cycle is 38.51%, and the net power of the cycle is 6.55 kW. The variation in the sCO 2 temperature at the shutdown of the internal combustion engine is analyzed, and a slow drop followed by a sudden and then a slow drop is observed. After 80 s from stopping the engine, the temperature drops by (23–33)% depending on the tube thickness of the recovery heat exchanger. The performances (net power, thermal efficiency, and waste heat recovery efficiency) of the split-flow sCO 2 recompression Brayton cycle are clearly superior to those of the steam Rankine cycle and the organic Rankine cycle (ORC) with cyclopentane as a working fluid.

Suggested Citation

  • Gabriel Mocanu & Cristian Iosifescu & Ion V. Ion & Florin Popescu & Michael Frătița & Robert Mădălin Chivu, 2024. "Energy Analysis of Waste Heat Recovery Using Supercritical CO 2 Brayton Cycle for Series Hybrid Electric Vehicles," Energies, MDPI, vol. 17(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2494-:d:1399634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walnum, Harald Taxt & Nekså, Petter & Nord, Lars O. & Andresen, Trond, 2013. "Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions," Energy, Elsevier, vol. 59(C), pages 513-520.
    2. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Li, Xiaoya & Huang, Guangdai & Chang, Liwen, 2016. "An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery," Applied Energy, Elsevier, vol. 176(C), pages 171-182.
    3. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    4. Wang, Rui & Wang, Xuan & Bian, Xingyan & Zhang, Xuanang & Cai, Jinwen & Tian, Hua & Shu, Gequn & Wang, Mingtao, 2023. "An optimal split ratio in design and control of a recompression supercritical CO2 Brayton system," Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yue & Rattner, Alexander S. & Dai, Yiping, 2018. "Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid," Energy, Elsevier, vol. 162(C), pages 1253-1268.
    2. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    3. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
    4. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    5. Apostolos Pesyridis & Muhammad Suleman Asif & Sadegh Mehranfar & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Thanos Megaritis, 2023. "Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications," Energies, MDPI, vol. 16(11), pages 1-17, May.
    6. Son, Seongmin & Jeong, Yongju & Cho, Seong Kuk & Lee, Jeong Ik, 2020. "Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network," Applied Energy, Elsevier, vol. 263(C).
    7. Karimi, Ali & Gimelli, Alfredo & Iossa, Raffaele & Muccillo, Massimiliano, 2024. "Techno-economic simulation and sensitivity analysis of modular cogeneration with organic rankine cycle and battery energy storage system for enhanced energy performance," Energy, Elsevier, vol. 295(C).
    8. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    9. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    10. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    11. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    12. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    13. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    14. Huang, Guangdai & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Zhuge, Weilin & Zhang, Jing & Atik, Mohammad Atikur Rahman, 2020. "Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery," Applied Energy, Elsevier, vol. 257(C).
    15. Li, Xiaoya & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Huang, Guangdai & Chen, Tianyu & Liu, Peng, 2017. "Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 696-707.
    16. Han, Xiaoqu & Liu, Ming & Zhai, Mengxu & Chong, Daotong & Yan, Junjie & Xiao, Feng, 2015. "Investigation on the off-design performances of flue gas pre-dried lignite-fired power system integrated with waste heat recovery at variable external working conditions," Energy, Elsevier, vol. 90(P2), pages 1743-1758.
    17. Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
    18. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
    19. Bennett, Jeffrey A. & Fuhrman, Jay & Brown, Tyler & Andrews, Nathan & Fittro, Roger & Clarens, Andres F., 2019. "Feasibility of Using sCO2 Turbines to Balance Load in Power Grids with a High Deployment of Solar Generation," Energy, Elsevier, vol. 181(C), pages 548-560.
    20. Li, Zhaozhi & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2023. "Optimal design and thermodynamic evaluation of supercritical CO2 oxy-coal circulating fluidized bed power generation systems," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2494-:d:1399634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.