IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p77-d1305583.html
   My bibliography  Save this article

Power Transformer Fault Detection: A Comparison of Standard Machine Learning and autoML Approaches

Author

Listed:
  • Guillermo Santamaria-Bonfil

    (Data Portfolio Manager Department, BBVA Mexico, Mexico City 06600, Mexico)

  • Gustavo Arroyo-Figueroa

    (Instituto Nacional de Electricidad y Energias Limpias, Cuernavaca 62490, Mexico)

  • Miguel A. Zuniga-Garcia

    (PCI Energy Solutions, Norman, OK 73072, USA)

  • Carlos Gustavo Azcarraga Ramos

    (Instituto Nacional de Electricidad y Energias Limpias, Cuernavaca 62490, Mexico)

  • Ali Bassam

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Merida 97000, Mexico)

Abstract

A key component for the performance, availability, and reliability of power grids is the power transformer. Although power transformers are very reliable assets, the early detection of incipient degradation mechanisms is very important to preventing failures that may shorten their residual life. In this work, a comparative analysis of standard machine learning (ML) algorithms (such as single and ensemble classification algorithms) and automatic machine learning (autoML) classifiers is presented for the fault diagnosis of power transformers. The goal of this research is to determine whether fully automated ML approaches are better or worse than traditional ML frameworks that require a human in the loop (such as a data scientist) to identify transformer faults from dissolved gas analysis results. The methodology uses a transformer fault database (TDB) gathered from specialized databases and technical literature. Fault data were processed using the Duval pentagon diagnosis approach and user–expert knowledge. Parameters from both single and ensemble classifiers were optimized through standard machine learning procedures. The results showed that the best-suited algorithm to tackle the problem is a robust, automatic machine learning classifier model, followed by standard algorithms, such as neural networks and stacking ensembles. These results highlight the ability of a robust, automatic machine learning model to handle unbalanced power transformer fault datasets with high accuracy, requiring minimum tuning effort by electrical experts. We also emphasize that identifying the most probable transformer fault condition will reduce the time required to find and solve a fault.

Suggested Citation

  • Guillermo Santamaria-Bonfil & Gustavo Arroyo-Figueroa & Miguel A. Zuniga-Garcia & Carlos Gustavo Azcarraga Ramos & Ali Bassam, 2023. "Power Transformer Fault Detection: A Comparison of Standard Machine Learning and autoML Approaches," Energies, MDPI, vol. 17(1), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:77-:d:1305583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/77/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/77/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qunli Wu & Hongjie Zhang, 2019. "A Novel Expertise-Guided Machine Learning Model for Internal Fault State Diagnosis of Power Transformers," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    2. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    3. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Erlin & Lv, Guoning & Li, Zuhe, 2024. "Evaluation of emission of the hydrogen-enriched diesel engine through machine learning," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    5. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    6. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    7. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    8. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    9. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    10. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    11. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    12. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    13. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    14. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    15. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    16. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    17. Sylwester Bejger, 2024. "Machine Learning in Cartel Screening—The Case of Parallel Pricing in a Fuel Wholesale Market," Energies, MDPI, vol. 17(16), pages 1-17, August.
    18. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    19. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    20. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:77-:d:1305583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.