IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p72-d1305492.html
   My bibliography  Save this article

Analysis and Monitoring of Maximum Solar Potential for Energy Production Optimization Using Photovoltaic Panels

Author

Listed:
  • Anna Manowska

    (Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Artur Dylong

    (Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Bogdan Tkaczyk

    (Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Jarosław Manowski

    (Rockwell Automation, 44 Francuska, 40-028 Katowice, Poland)

Abstract

This article explores the efficiency of photovoltaic (PV) panels, which is crucial in the search for sustainable energy solutions. The study presents a comprehensive analysis of the maximum solar potential achievable through photovoltaic technologies amidst the increasing global energy demands. The research examines solar radiation measurement techniques, the incidence angle of solar rays, and the intricacies of PV panel efficiency. It highlights the potential for improving the performance of solar-based energy systems. Four main sections are covered, beginning with an introduction to the importance of energy storage in sustainable energy production, especially in the context of the European Union’s energy goals and the Green Deal. The following sections discuss the precision needed in the geographical positioning of measurement systems, the impact of light physics, and variable weather conditions on energy capture. The last section presents a novel clock algorithm regulation system designed to enhance the efficiency of the measurement system.

Suggested Citation

  • Anna Manowska & Artur Dylong & Bogdan Tkaczyk & Jarosław Manowski, 2023. "Analysis and Monitoring of Maximum Solar Potential for Energy Production Optimization Using Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:72-:d:1305492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/72/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/72/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eva Segura & Lidia M. Belmonte & Rafael Morales & José A. Somolinos, 2023. "A Strategic Analysis of Photovoltaic Energy Projects: The Case Study of Spain," Sustainability, MDPI, vol. 15(16), pages 1-37, August.
    2. Ghaithan, Ahmed M. & Mohammed, Awsan & Al-Hanbali, Ahmad & Attia, Ahmed M. & Saleh, Haitham, 2022. "Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant," Energy, Elsevier, vol. 251(C).
    3. Dhanasingh Sivalinga Vijayan & Eugeniusz Koda & Arvindan Sivasuriyan & Jan Winkler & Parthiban Devarajan & Ramamoorthy Sanjay Kumar & Aleksandra Jakimiuk & Piotr Osinski & Anna Podlasek & Magdalena Da, 2023. "Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
    4. Cheema, Armaghan & Shaaban, M.F. & Ismail, Mahmoud H., 2021. "A novel stochastic dynamic modeling for photovoltaic systems considering dust and cleaning," Applied Energy, Elsevier, vol. 300(C).
    5. Lidia Gawlik, 2018. "The Polish power industry in energy transformation process," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 31(1), pages 229-237, May.
    6. Olczak, Piotr, 2023. "Evaluation of degradation energy productivity of photovoltaic installations in long-term case study," Applied Energy, Elsevier, vol. 343(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Fanglong & Lu, Wang & Ji, Hui & Nie, Songlin & Ma, Zhonghai & Yan, Xiaopeng, 2024. "Multi-objective optimization and energy efficiency improvement for rotor duct in integrated energy recovery-pressure boost device," Energy, Elsevier, vol. 300(C).
    2. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    3. Sokołowski, Jakub & Bouzarovski, Stefan, 2022. "Decarbonisation of the Polish residential sector between the 1990s and 2021: A case study of policy failures," Energy Policy, Elsevier, vol. 163(C).
    4. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Pietrasanta, Ariana M. & Mussati, Sergio F. & Aguirre, Pio A. & Schmidhalter, Ignacio & Morosuk, Tatiana & Mussati, Miguel C., 2023. "Optimal sizing of seawater desalination systems using wind-solar hybrid renewable energy sources," Renewable Energy, Elsevier, vol. 215(C).
    6. Szabo, John & Fabok, Marton, 2020. "Infrastructures and state-building: Comparing the energy politics of the European Commission with the governments of Hungary and Poland," Energy Policy, Elsevier, vol. 138(C).
    7. Anna Bluszcz & Anna Manowska, 2021. "The Use of Hierarchical Agglomeration Methods in Assessing the Polish Energy Market," Energies, MDPI, vol. 14(13), pages 1-18, July.
    8. Jakub Jasiński & Mariusz Kozakiewicz & Maciej Sołtysik, 2024. "Analysis of the Economic Soundness and Viability of Migrating from Net Billing to Net Metering Using Energy Cooperatives," Energies, MDPI, vol. 17(6), pages 1-14, March.
    9. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    10. Bartłomiej Iglinski & Karol Flisikowski & Michał Bernard Pietrzak & Urszula Kiełkowska & Mateusz Skrzatek & Anas Zyadin & Karthikeyan Natarajan, 2021. "Renewable Energy in the Pomerania Voivodeship—Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation," Energies, MDPI, vol. 14(24), pages 1-27, December.
    11. Ryszard Marszowski & Sebastian Iwaszenko, 2021. "Mining in Poland in Light of Energy Transition: Case Study of Changes Based on the Knowledge Economy," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    12. Irshad, Ahmad Shah & Samadi, Wais Khan & Fazli, Agha Mohammad & Noori, Abdul Ghani & Amin, Ahmad Shah & Zakir, Mohammad Naseer & Bakhtyal, Irfan Ahmad & Karimi, Bashir Ahmad & Ludin, Gul Ahmad & Senjy, 2023. "Resilience and reliable integration of PV-wind and hydropower based 100% hybrid renewable energy system without any energy storage system for inaccessible area electrification," Energy, Elsevier, vol. 282(C).
    13. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    14. Kofi Nyarko & Jonathan Whale & Tania Urmee, 2023. "Empowering Low-Income Communities with Sustainable Decentralized Renewable Energy-Based Mini-Grids," Energies, MDPI, vol. 16(23), pages 1-31, November.
    15. Ye Yang & Zegen Wang & Ying Zhang & Jiulin Jiang & Jiwu He, 2023. "Spatial and Temporal Patterns of Green Energy Development in China," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    16. Jarosław Szlugaj & Krzysztof Galos, 2021. "Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland," Energies, MDPI, vol. 14(14), pages 1-16, July.
    17. Przemysław Śleszyński & Maciej Nowak & Agnieszka Brelik & Bartosz Mickiewicz & Natalia Oleszczyk, 2021. "Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy," Energies, MDPI, vol. 14(7), pages 1-20, March.
    18. Lidia Gawlik & Eugeniusz Mokrzycki, 2019. "Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package," Energies, MDPI, vol. 12(17), pages 1-19, August.
    19. Zacharczuk, Wojciech & Andruszkiewicz, Artur & Tatarek, Andrzej & Alahmer, Ali & Alsaqoor, Sameh, 2021. "Effect of Ca-based additives on the capture of SO2 during combustion of pulverized lignite," Energy, Elsevier, vol. 231(C).
    20. Agnieszka Czaplicka-Kotas & Joanna Kulczycka & Natalia Iwaszczuk, 2020. "Energy Clusters as a New Urban Symbiosis Concept for Increasing Renewable Energy Production—A Case Study of Zakopane City," Sustainability, MDPI, vol. 12(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:72-:d:1305492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.