IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6579-d1238562.html
   My bibliography  Save this article

Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review

Author

Listed:
  • Dhanasingh Sivalinga Vijayan

    (Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission’s Research Foundation (VMRF), Paiyanoor 603104, India)

  • Eugeniusz Koda

    (Institute of Civil Engineering, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland)

  • Arvindan Sivasuriyan

    (Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission’s Research Foundation (VMRF), Paiyanoor 603104, India
    Department of Architecture, Anand School of Architecture, Kalasaligam Nagar, Kazhipattur 603103, India)

  • Jan Winkler

    (Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

  • Parthiban Devarajan

    (Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission’s Research Foundation (VMRF), Paiyanoor 603104, India)

  • Ramamoorthy Sanjay Kumar

    (Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission’s Research Foundation (VMRF), Paiyanoor 603104, India)

  • Aleksandra Jakimiuk

    (Institute of Civil Engineering, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland)

  • Piotr Osinski

    (Institute of Civil Engineering, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland)

  • Anna Podlasek

    (Institute of Civil Engineering, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland)

  • Magdalena Daria Vaverková

    (Institute of Civil Engineering, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
    Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

Abstract

Globally, solar energy has become a major contributor to the rapid adoption of renewable energy. Significant energy savings have resulted from the widespread utilization of solar energy in the industrial, residential, and commercial divisions. This review article comprises research conducted over the past 15 years (2008–2023), utilizing a comprehensive collection of 163 references. Significantly, a considerable focus is directed towards the period from 2020 to 2023, encompassing an extensive investigation into the latest developments in solar panel technology in civil engineering. The article examines the incorporation of solar panels into building designs and addresses installation-related structural considerations. In addition, the present review examines the applications of solar panels in terms of innovative infrastructure development applications of solar panels, such as photovoltaic parking lot canopies and photovoltaic noise barriers, which contribute to improved energy efficiency. It also emphasizes their role in water management systems, including water treatment plants, water pumping and irrigation systems, energy-efficient solar desalination technologies, and promoting sustainable water practices. In addition, this study examines how solar panels have been incorporated into urban planning, including smart cities and public parks, thereby transforming urban landscapes into greener alternatives. This study also examined the use of solar panels in building materials, such as façade systems and solar-powered building envelope solutions, demonstrating their versatility in the construction industry. This review explores the diverse applications of solar energy, which promotes sustainable practices in various industries. Owing to the ongoing research, solar energy holds great promise for a greener and cleaner future.

Suggested Citation

  • Dhanasingh Sivalinga Vijayan & Eugeniusz Koda & Arvindan Sivasuriyan & Jan Winkler & Parthiban Devarajan & Ramamoorthy Sanjay Kumar & Aleksandra Jakimiuk & Piotr Osinski & Anna Podlasek & Magdalena Da, 2023. "Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6579-:d:1238562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Venugopal, Prasanth & Shekhar, Aditya & Visser, Erwin & Scheele, Natalia & Chandra Mouli, Gautham Ram & Bauer, Pavol & Silvester, Sacha, 2018. "Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies," Applied Energy, Elsevier, vol. 212(C), pages 1226-1239.
    2. Hosseinnia, Seyed Mojtaba & Sorin, Mikhail, 2022. "Energy targeting approach for optimum solar assisted ground source heat pump integration in buildings," Energy, Elsevier, vol. 248(C).
    3. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    4. Semeraro, Teodoro & Pomes, Alessandro & Del Giudice, Cecilia & Negro, Danilo & Aretano, Roberta, 2018. "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," Energy Policy, Elsevier, vol. 117(C), pages 218-227.
    5. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    6. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    7. Yang, Libing & Entchev, Evgueniy & Rosato, Antonio & Sibilio, Sergio, 2017. "Smart thermal grid with integration of distributed and centralized solar energy systems," Energy, Elsevier, vol. 122(C), pages 471-481.
    8. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    9. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    10. Ruiz-Aguirre, A. & Villachica-Llamosas, J.G. & Polo-López, M.I. & Cabrera-Reina, A. & Colón, G. & Peral, J. & Malato, S., 2022. "Assessment of pilot-plant scale solar photocatalytic hydrogen generation with multiple approaches: Valorization, water decontamination and disinfection," Energy, Elsevier, vol. 260(C).
    11. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    12. Tariq, Rasikh & Torres-Aguilar, C.E. & Sheikh, Nadeem Ahmed & Ahmad, Tanveer & Xamán, J. & Bassam, A., 2022. "Data engineering for digital twining and optimization of naturally ventilated solar façade with phase changing material under global projection scenarios," Renewable Energy, Elsevier, vol. 187(C), pages 1184-1203.
    13. Yao, Zhaosheng & Wang, Zhiyuan & Ran, Lun, 2023. "Smart charging and discharging of electric vehicles based on multi-objective robust optimization in smart cities," Applied Energy, Elsevier, vol. 343(C).
    14. Deshmukh, Swaraj Sanjay & Pearce, Joshua M., 2021. "Electric vehicle charging potential from retail parking lot solar photovoltaic awnings," Renewable Energy, Elsevier, vol. 169(C), pages 608-617.
    15. Liang, Ruobing & Wang, Peng & Zhou, Chao & Pan, Qiangguang & Riaz, Ahmad & Zhang, Jili, 2020. "Thermal performance study of an active solar building façade with specific PV/T hybrid modules," Energy, Elsevier, vol. 191(C).
    16. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    17. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    18. Zhou, Shiqiang & Razaqpur, A. Ghani, 2022. "Efficient heating of buildings by passive solar energy utilizing an innovative dynamic building envelope incorporating phase change material," Renewable Energy, Elsevier, vol. 197(C), pages 305-319.
    19. Dezhdar, Ali & Assareh, Ehsanolah & Agarwal, Neha & bedakhanian, Ali & Keykhah, Sajjad & fard, Ghazaleh yeganeh & zadsar, Narjes & Aghajari, Mona & Lee, Moonyong, 2023. "Transient optimization of a new solar-wind multi-generation system for hydrogen production, desalination, clean electricity, heating, cooling, and energy storage using TRNSYS," Renewable Energy, Elsevier, vol. 208(C), pages 512-537.
    20. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    21. Jan Winkler & Monika Malovcová & Dana Adamcová & Paweł Ogrodnik & Grzegorz Pasternak & David Zumr & Marek Kosmala & Eugeniusz Koda & Magdalena Daria Vaverková, 2021. "Significance of Urban Vegetation on Lawns Regarding the Risk of Fire," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    22. Mosannenzadeh, Farnaz & Di Nucci, Maria Rosaria & Vettorato, Daniele, 2017. "Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach," Energy Policy, Elsevier, vol. 105(C), pages 191-201.
    23. Jo, J.H. & Carlson, J. & Golden, J.S. & Bryan, H., 2010. "Sustainable urban energy: Development of a mesoscale assessment model for solar reflective roof technologies," Energy Policy, Elsevier, vol. 38(12), pages 7951-7959, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Wall Technology and Its Impact on Building Performance," Energies, MDPI, vol. 17(5), pages 1-36, February.
    2. Anna Manowska & Artur Dylong & Bogdan Tkaczyk & Jarosław Manowski, 2023. "Analysis and Monitoring of Maximum Solar Potential for Energy Production Optimization Using Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semeraro, Teodoro & Scarano, Aurelia & Santino, Angelo & Emmanuel, Rohinton & Lenucci, Marcello, 2022. "An innovative approach to combine solar photovoltaic gardens with agricultural production and ecosystem services," Ecosystem Services, Elsevier, vol. 56(C).
    2. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    3. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    4. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    5. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Vanaga, Ruta & Narbuts, Jānis & Zundāns, Zigmārs & Blumberga, Andra, 2023. "On-site testing of dynamic facade system with the solar energy storage," Energy, Elsevier, vol. 283(C).
    7. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    8. Daisuke Yajima & Teruya Toyoda & Masaaki Kirimura & Kenji Araki & Yasuyuki Ota & Kensuke Nishioka, 2023. "Estimation Model of Agrivoltaic Systems Maximizing for Both Photovoltaic Electricity Generation and Agricultural Production," Energies, MDPI, vol. 16(7), pages 1-16, April.
    9. Hayibo, Koami Soulemane & Pearce, Joshua M., 2023. "Vertical free-swinging photovoltaic racking energy modeling: A novel approach to agrivoltaics," Renewable Energy, Elsevier, vol. 218(C).
    10. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    11. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Feuerbacher, Arndt & Laub, Moritz & Högy, Petra & Lippert, Christian & Pataczek, Lisa & Schindele, Stephan & Wieck, Christine & Zikeli, Sabine, 2021. "An analytical framework to estimate the economics and adoption potential of dual land-use systems: The case of agrivoltaics," Agricultural Systems, Elsevier, vol. 192(C).
    13. Manoj Kumar, Nallapaneni & Chopra, Shauhrat S., 2023. "Integrated techno-economic and life cycle assessment of shared circular business model based blockchain-enabled dynamic grapevoltaic farm for major grape growing states in India," Renewable Energy, Elsevier, vol. 209(C), pages 365-381.
    14. Tahir, Zamen & Butt, Nauman Zafar, 2022. "Implications of spatial-temporal shading in agrivoltaics under fixed tilt & tracking bifacial photovoltaic panels," Renewable Energy, Elsevier, vol. 190(C), pages 167-176.
    15. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
    16. Reher, Thomas & Lavaert, Cas & Willockx, Brecht & Huyghe, Yasmin & Bisschop, Jolien & Martens, Johan A. & Diels, Jan & Cappelle, Jan & Van de Poel, Bram, 2024. "Potential of sugar beet (Beta vulgaris) and wheat (Triticum aestivum) production in vertical bifacial, tracked, or elevated agrivoltaic systems in Belgium," Applied Energy, Elsevier, vol. 359(C).
    17. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    18. Safat Dipta, Shahriyar & Schoenlaub, Jean & Habibur Rahaman, Md & Uddin, Ashraf, 2022. "Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses," Applied Energy, Elsevier, vol. 328(C).
    19. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    20. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6579-:d:1238562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.