IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124015945.html
   My bibliography  Save this article

Using DNPV to determine the economic viability of residential photovoltaic systems in Germany: Is the investment still worth it?

Author

Listed:
  • Kraemer, Carlo

Abstract

The conditions for photovoltaic investments have changed significantly in recent times. Declining subsidies and rising investment costs make these investments less attractive. In addition, electricity price uncertainty has risen sharply, making the economic benefit of using self-produced electricity from residential photovoltaic systems risky. This paper provides a novel framework to determine the financial attractiveness of such investments using the Decoupled Net Present Value (DNPV) method, which allows for a systematic and consistent consideration of the individual risks inherent in these investments. Furthermore, an extensive survey of the relevant current market parameters is performed to validate the common opinion that residential photovoltaic investments are generally advantageous. It turns out that in the current market environment in Germany, residential photovoltaic systems are not economically viable under most conditions. The system evaluated in this case study with a common size of 10 kWp leads to a negative DNPV of -1,664 €. This results in a compelling need for action for political decision-makers in order not to jeopardize the ambitious goals for the expansion of power generation from renewable energy sources.

Suggested Citation

  • Kraemer, Carlo, 2024. "Using DNPV to determine the economic viability of residential photovoltaic systems in Germany: Is the investment still worth it?," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015945
    DOI: 10.1016/j.renene.2024.121526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    2. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    3. De Boeck, L. & Van Asch, S. & De Bruecker, P. & Audenaert, A., 2016. "Comparison of support policies for residential photovoltaic systems in the major EU markets through investment profitability," Renewable Energy, Elsevier, vol. 87(P1), pages 42-53.
    4. Yessenia Mart nez-Ruiz & Diego Fernando Manotas-Duque & Howard Ram rez-Malule, 2021. "Evaluation of Investment Projects in Photovoltaic Solar Energy using the DNPV Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 180-185.
    5. David Espinoza & Jeremy W.F. Morris, 2013. "Decoupled NPV: a simple, improved method to value infrastructure investments," Construction Management and Economics, Taylor & Francis Journals, vol. 31(5), pages 471-496, May.
    6. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    7. Christian Hafner, 2003. "Simple approximations for option pricing under mean reversion and stochastic volatility," Computational Statistics, Springer, vol. 18(3), pages 339-353, September.
    8. Olczak, Piotr, 2023. "Evaluation of degradation energy productivity of photovoltaic installations in long-term case study," Applied Energy, Elsevier, vol. 343(C).
    9. Paul Embrechts, 2000. "Actuarial versus Financial Pricing of Insurance," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(4), pages 17-26, March.
    10. Shimbar, Ali & Ebrahimi, Seyed Babak, 2020. "Political risk and valuation of renewable energy investments in developing countries," Renewable Energy, Elsevier, vol. 145(C), pages 1325-1333.
    11. Alexander A. Robichek & Stewart C. Myers, 1966. "Conceptual Problems In The Use Of Risk‐Adjusted Discount Rates," Journal of Finance, American Finance Association, vol. 21(4), pages 727-730, December.
    12. Audenaert, Amaryllis & De Boeck, Liesje & De Cleyn, Sven & Lizin, Sebastien & Adam, Jean-François, 2010. "An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: A generic model," Renewable Energy, Elsevier, vol. 35(12), pages 2674-2682.
    13. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    14. Rodrigues, Sandy & Chen, Xiaoju & Morgado-Dias, F., 2017. "Economic analysis of photovoltaic systems for the residential market under China's new regulation," Energy Policy, Elsevier, vol. 101(C), pages 467-472.
    15. Espinoza, R. David & Rojo, Javier, 2015. "Using DNPV for valuing investments in the energy sector: A solar project case study," Renewable Energy, Elsevier, vol. 75(C), pages 44-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel José Ordóñez Mendieta & Esteban Sánchez Hernández, 2021. "Analysis of PV Self-Consumption in Educational and Office Buildings in Spain," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    2. Espinoza, R. David & Rojo, Javier, 2017. "Towards sustainable mining (Part I): Valuing investment opportunities in the mining sector," Resources Policy, Elsevier, vol. 52(C), pages 7-18.
    3. Tatiana Ponomarenko & Eugene Marin & Sergey Galevskiy, 2022. "Economic Evaluation of Oil and Gas Projects: Justification of Engineering Solutions in the Implementation of Field Development Projects," Energies, MDPI, vol. 15(9), pages 1-22, April.
    4. D. Espinoza & J. Morris & H. Baroud & M. Bisogno & A. Cifuentes & A. Gentzoglanis & L. Luccioni & J. Rojo & F. Vahedifard, 2020. "The role of traditional discounted cash flows in the tragedy of the horizon: another inconvenient truth," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 643-660, April.
    5. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    6. Santiago, Isabel & Palacios-Garcia, Emilio J. & Gonzalez-Redondo, Miguel & Arenas-Ramos, Victoria & Simon, Bernardo & Hayes, Barry P. & Moreno-Munoz, Antonio, 2024. "Assessment of generation capacity and economic viability of photovoltaic systems on urban buildings in southern Spain: A socioeconomic, technological, and regulatory analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    7. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    8. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    9. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    10. Puranen, Pietari & Kosonen, Antti & Ahola, Jero, 2021. "Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland," Applied Energy, Elsevier, vol. 298(C).
    11. Dou, Shi-quan & Liu, Jiang-yi & Xiao, Jian-zhong & Pan, Wen, 2020. "Economic feasibility valuing of deep mineral resources based on risk analysis: Songtao manganese ore - China case study," Resources Policy, Elsevier, vol. 66(C).
    12. Hengtian Wang & Xiaolong Yang & Xinxin Xu & Liu Fei, 2021. "Exploring Opportunities and Challenges of Solar PV Power under Carbon Peak Scenario in China: A PEST Analysis," Energies, MDPI, vol. 14(11), pages 1-28, May.
    13. Teschner, Benjamin & Holley, Elizabeth, 2021. "The cost of mine suspension from social conflict: A decision tree model," Resources Policy, Elsevier, vol. 74(C).
    14. Andrey Leonidov & Ilya Tipunin & Ekaterina Serebryannikova, 2020. "On Evaluation of Risky Investment Projects. Investment Certainty Equivalence," Papers 2005.12173, arXiv.org.
    15. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    16. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    17. Josefa López-Marín & Amparo Gálvez & Francisco M. del Amor & Jose M. Brotons, 2020. "The Financial Valuation Risk in Pepper Production: The Use of Decoupled Net Present Value," Mathematics, MDPI, vol. 9(1), pages 1-19, December.
    18. Chatzisideris, Marios D. & Laurent, Alexis & Christoforidis, Georgios C. & Krebs, Frederik C., 2017. "Cost-competitiveness of organic photovoltaics for electricity self-consumption at residential buildings: A comparative study of Denmark and Greece under real market conditions," Applied Energy, Elsevier, vol. 208(C), pages 471-479.
    19. Shimbar, Ali & Ebrahimi, Seyed Babak, 2017. "The application of DNPV to unlock foreign direct investment in waste-to-energy in developing countries," Energy, Elsevier, vol. 132(C), pages 186-193.
    20. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "Economic Analysis of a Photovoltaic System: A Resource for Residential Households," Energies, MDPI, vol. 10(6), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.