IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3955-d1141951.html
   My bibliography  Save this article

Economic Dispatch Optimization of a Microgrid with Wind–Photovoltaic-Load-Storage in Multiple Scenarios

Author

Listed:
  • Haipeng Wang

    (Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China
    Hebei Engineering Research Center for Advanced Manufacturing & Intelligent Operation and Maintenance of Electric Power Machinery, North China Electric Power University, Baoding 071003, China)

  • Xuewei Wu

    (Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Kai Sun

    (Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Xiaodong Du

    (State Grid Hebei Electric Power Research Institute, Shijiazhuang 050021, China)

  • Yuling He

    (Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China
    Hebei Engineering Research Center for Advanced Manufacturing & Intelligent Operation and Maintenance of Electric Power Machinery, North China Electric Power University, Baoding 071003, China)

  • Kaiwen Li

    (Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

The optimal economic power dispatching of a microgrid is an important part of the new power system optimization, which is of great significance to reduce energy consumption and environmental pollution. The microgrid should not only meet the basic demand of power supply but also improve the economic benefit. Considering the generation cost, the discharge cost, the power purchase cost, the electricity sales revenue, the battery charging and discharging power constraints, and the charging and discharging time constraints, a joint optimization model for a multi-scenario microgrid with wind–photovoltaic-load storage is proposed in our study. Additionally, the corresponding model solving algorithm based on particle swarm optimization is also given. In addition, taking the Wangjiazhai project in Baiyangdian region as a case study, the effectiveness of the proposed model and algorithm is verified. The joint optimization model for a microgrid with wind–photovoltaic-load storage in multiple scenarios is discussed and investigated, and the optimal economic power dispatching schemes in multiple scenarios are also provided. Our research shows that: (1) the battery can play a role in peak shaving and valley filling, which can make microgrids more economical; (2) when the power purchase price is lower than the cost of renewable energy power generation, if the wind turbine and the photovoltaics are allowed to be discarded the microgrid will produce higher economic benefits; and (3) restricting the exchange power between the microgrid and the main power network will lead to a negative impact on the economy for the microgrid.

Suggested Citation

  • Haipeng Wang & Xuewei Wu & Kai Sun & Xiaodong Du & Yuling He & Kaiwen Li, 2023. "Economic Dispatch Optimization of a Microgrid with Wind–Photovoltaic-Load-Storage in Multiple Scenarios," Energies, MDPI, vol. 16(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3955-:d:1141951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirotaka Takano & Ryosuke Hayashi & Hiroshi Asano & Tadahiro Goda, 2021. "Optimal Sizing of Battery Energy Storage Systems Considering Cooperative Operation with Microgrid Components," Energies, MDPI, vol. 14(21), pages 1-13, November.
    2. Haipeng Wang & Xuewei Wu & Kai Sun & Yuling He, 2022. "Research on the Optimal Economic Power Dispatching of a Multi-Microgrid Cooperative Operation," Energies, MDPI, vol. 15(21), pages 1-13, November.
    3. Fauzan Hanif Jufri & Dwi Riana Aryani & Iwa Garniwa & Budi Sudiarto, 2021. "Optimal Battery Energy Storage Dispatch Strategy for Small-Scale Isolated Hybrid Renewable Energy System with Different Load Profile Patterns," Energies, MDPI, vol. 14(11), pages 1-19, May.
    4. Lorestani, Alireza & Gharehpetian, G.B. & Nazari, Mohammad Hassan, 2019. "Optimal sizing and techno-economic analysis of energy- and cost-efficient standalone multi-carrier microgrid," Energy, Elsevier, vol. 178(C), pages 751-764.
    5. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    6. Jian-Li Zhao & Si-Ming Zeng & Wen-Tao Xu & Xiao-Dong Du & Yu-Ling He, 2022. "Optimized Self-Adaptive Power Distribution for Microgrids in a Typical Tourism Water Village of Northern China under COVID-19 Background," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    2. Mehrdad Tahmasebi & Jagadeesh Pasupuleti & Fatemeh Mohamadian & Mohammad Shakeri & Josep M. Guerrero & M. Reyasudin Basir Khan & Muhammad Shahzad Nazir & Amir Safari & Najmeh Bazmohammadi, 2021. "Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    3. Azimian, Mahdi & Amir, Vahid & Mohseni, Soheil & Brent, Alan C. & Bazmohammadi, Najmeh & Guerrero, Josep M., 2022. "Optimal Investment Planning of Bankable Multi-Carrier Microgrid Networks," Applied Energy, Elsevier, vol. 328(C).
    4. Shahbazbegian, Vahid & Dehghani, Farnam & Shafiyi, Mohammad Agha & Shafie-khah, Miadreza & Laaksonen, Hannu & Ameli, Hossein, 2023. "Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology," Energy, Elsevier, vol. 283(C).
    5. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    6. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    7. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    8. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    9. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    10. Nor Liza Tumeran & Siti Hajar Yusoff & Teddy Surya Gunawan & Mohd Shahrin Abu Hanifah & Suriza Ahmad Zabidi & Bernardi Pranggono & Muhammad Sharir Fathullah Mohd Yunus & Siti Nadiah Mohd Sapihie & Asm, 2023. "Model Predictive Control Based Energy Management System Literature Assessment for RES Integration," Energies, MDPI, vol. 16(8), pages 1-27, April.
    11. Liu, Baonan & Zhou, Jianzhong & Xu, Yanhe & Lai, Xinjie & Shi, Yousong & Li, Mengyao, 2022. "An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions," Renewable Energy, Elsevier, vol. 182(C), pages 254-273.
    12. Irina Picioroaga & Madalina Luca & Andrei Tudose & Dorian Sidea & Mircea Eremia & Constantin Bulac, 2023. "Resilience-Driven Optimal Sizing of Energy Storage Systems in Remote Microgrids," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    13. Hoseini, Naghi & Sheikholeslami, Abdolreza & Barforoushi, Taghi & Latify, Mohammad Amin, 2020. "Preventive maintenance mid-term scheduling of resources in multi-carrier energy systems," Energy, Elsevier, vol. 197(C).
    14. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    15. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    16. Dhunny, A.Z. & Allam, Z. & Lobine, D. & Lollchund, M.R., 2019. "Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective," Energy, Elsevier, vol. 185(C), pages 1282-1297.
    17. Wang, Shuoqi & Guo, Dongxu & Han, Xuebing & Lu, Languang & Sun, Kai & Li, Weihan & Sauer, Dirk Uwe & Ouyang, Minggao, 2020. "Impact of battery degradation models on energy management of a grid-connected DC microgrid," Energy, Elsevier, vol. 207(C).
    18. Yang, Shuxia & Wang, Xiongfei & Xu, Jiayu & Tang, Mingrun & Chen, Guang, 2023. "Distribution network adaptability assessment considering distributed PV “reverse power flow” behavior - a case study in Beijing," Energy, Elsevier, vol. 275(C).
    19. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    20. Lee, Chien-Chiang & Hussain, Jafar & Mu, Xian, 2024. "Renewable energy and carbon-neutral gaming: A holistic approach to sustainable electricity," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3955-:d:1141951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.