IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3931-d1140716.html
   My bibliography  Save this article

Hybrid (Gas and Geothermal) Greenhouse Simulations Aimed at Optimizing Investment and Operative Costs: A Case Study in NW Italy

Author

Listed:
  • Jessica Maria Chicco

    (Interuniversity Department of Regional, and Urban Studies, and Planning (DIST), University of Turin, 10124 Torino, Italy)

  • Leonardo Fonte

    (Direzione Edilizia e Sostenibilità, University of Turin, 10124 Torino, Italy)

  • Giuseppe Mandrone

    (Interuniversity Department of Regional, and Urban Studies, and Planning (DIST), University of Turin, 10124 Torino, Italy)

  • Andrea Tartaglino

    (Direzione Edilizia e Sostenibilità, University of Turin, 10124 Torino, Italy)

  • Damiano Vacha

    (Interuniversity Department of Regional, and Urban Studies, and Planning (DIST), University of Turin, 10124 Torino, Italy)

Abstract

Generally, greenhouses are high energy-consuming, sometimes accounting for 50% of the cost of greenhouse production. Geothermal energy plays a very important role in maintaining the desired temperature and reducing energy consumption. This work deals with a project of a hybrid heating plant (97% geothermal energy and 3% gas-condensing boiler) for the innovative Plant Phenotyping Greenhouse at the University Campus in Grugliasco (few km West of the city of Turin). The aim of the study is to testify to the energy efficiency of this kind of hybrid plant as well as its economic sustainability. Numerical simulations of a GRT were used to calibrate the system and verify that the software reasonably modeled the real case. They helped to correctly size the geothermal plant, also providing data about the thermal energy storage and production during on and off plant cycles. The results show a thermal power of 50.92 kW over 120 days of plant operation, in line with the expected energy needs to meet the base load demand. Long-term results further ensure a negligeable impact on the ground, with a thermal plume between 5 and 10 m from the plant, reducing substantially in a few months after switching off the plant.

Suggested Citation

  • Jessica Maria Chicco & Leonardo Fonte & Giuseppe Mandrone & Andrea Tartaglino & Damiano Vacha, 2023. "Hybrid (Gas and Geothermal) Greenhouse Simulations Aimed at Optimizing Investment and Operative Costs: A Case Study in NW Italy," Energies, MDPI, vol. 16(9), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3931-:d:1140716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jessica Maria Chicco & Giuseppe Mandrone, 2022. "Modelling the Energy Production of a Borehole Thermal Energy Storage (BTES) System," Energies, MDPI, vol. 15(24), pages 1-18, December.
    2. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
    3. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    4. Giordano, N. & Comina, C. & Mandrone, G. & Cagni, A., 2016. "Borehole thermal energy storage (BTES). First results from the injection phase of a living lab in Torino (NW Italy)," Renewable Energy, Elsevier, vol. 86(C), pages 993-1008.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
    2. Karolina Dec & Elżbieta Broniewicz & Mirosław Broniewicz, 2020. "The Possibility Analysis of Adapting a Public Building to the Standard of a Building with a Zero Energy Balance," Energies, MDPI, vol. 13(23), pages 1-18, December.
    3. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.
    4. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    5. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    6. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    7. Braungardt, Sibylle & Bürger, Veit & Zieger, Jana & Bosselaar, Lex, 2019. "How to include cooling in the EU Renewable Energy Directive? Strategies and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 260-267.
    8. Félix Ruiz-Calvo & Carla Montagud & Antonio Cazorla-Marín & José M. Corberán, 2017. "Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems," Energies, MDPI, vol. 10(10), pages 1-21, September.
    9. Giordano, Nicolò & Raymond, Jasmin, 2019. "Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Michał Kaczmarczyk & Anna Sowiżdżał & Barbara Tomaszewska, 2024. "Life Cycle and Water Footprint Assessment in the Geothermal Energy Sector," Energies, MDPI, vol. 17(23), pages 1-23, December.
    11. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    12. Hoofar Hemmatabady & Julian Formhals & Bastian Welsch & Daniel Otto Schulte & Ingo Sass, 2020. "Optimized Layouts of Borehole Thermal Energy Storage Systems in 4th Generation Grids," Energies, MDPI, vol. 13(17), pages 1-26, August.
    13. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.
    15. Simone Mancin & Marco Noro, 2020. "Reversible Heat Pump Coupled with Ground Ice Storage for Annual Air Conditioning: An Energy Analysis," Energies, MDPI, vol. 13(23), pages 1-16, November.
    16. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    17. Mohammad Shakerin & Vilde Eikeskog & Yantong Li & Trond Thorgeir Harsem & Natasa Nord & Haoran Li, 2022. "Investigation of Combined Heating and Cooling Systems with Short- and Long-Term Storages," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    18. Nordbeck, Johannes & Bauer, Sebastian & Dahmke, Andreas & Delfs, Jens-Olaf & Gomes, Hugo & Hailemariam, Henok & Kinias, Constantin & Meier zu Beerentrup, Kerstin & Nagel, Thomas & Smirr, Christian & V, 2020. "A modular cement-based subsurface heat storage: Performance test, model development and thermal impacts," Applied Energy, Elsevier, vol. 279(C).
    19. Casasso, Alessandro & Sethi, Rajandrea, 2017. "Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy)," Renewable Energy, Elsevier, vol. 102(PB), pages 306-315.
    20. Anders E. Carlsson, 2020. "Coarse-Grained Model of Underground Thermal Energy Storage Applied to Efficiency Optimization," Energies, MDPI, vol. 13(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3931-:d:1140716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.