Effect of Vertical Confinement and Blade Flexibility on Cross-Flow Turbines
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zeiner-Gundersen, Dag Herman, 2015. "A novel flexible foil vertical axis turbine for river, ocean, and tidal applications," Applied Energy, Elsevier, vol. 151(C), pages 60-66.
- Lazauskas, L. & Kirke, B.K., 2012. "Modeling passive variable pitch cross flow hydrokinetic turbines to maximize performance and smooth operation," Renewable Energy, Elsevier, vol. 45(C), pages 41-50.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stefan Hoerner & Iring Kösters & Laure Vignal & Olivier Cleynen & Shokoofeh Abbaszadeh & Thierry Maître & Dominique Thévenin, 2021. "Cross-Flow Tidal Turbines with Highly Flexible Blades—Experimental Flow Field Investigations at Strong Fluid–Structure Interactions," Energies, MDPI, vol. 14(4), pages 1-17, February.
- Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
- Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
- Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.
- Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
- Paul Brousseau & Mustapha Benaouicha & Sylvain Guillou, 2021. "Hydrodynamic Efficiency Analysis of a Flexible Hydrofoil Oscillating in a Moderate Reynolds Number Fluid Flow," Energies, MDPI, vol. 14(14), pages 1-19, July.
- Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
- Davila-Vilchis, J.M. & Mishra, R.S., 2014. "Performance of a hydrokinetic energy system using an axial-flux permanent magnet generator," Energy, Elsevier, vol. 65(C), pages 631-638.
- Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
- Acarer, Sercan, 2020. "Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines," Energy, Elsevier, vol. 201(C).
- Lu, Shibao & Ye, Weiwei & Xue, Yangang & Tang, Yao & Guo, Min, 2020. "Dynamic feature information extraction using the special empirical mode decomposition entropy value and index energy," Energy, Elsevier, vol. 193(C).
- Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
- Epps, Brenden P. & Roesler, Bernard T. & Medvitz, Richard B. & Choo, Yeunun & McEntee, Jarlath, 2019. "A viscous vortex lattice method for analysis of cross-flow propellers and turbines," Renewable Energy, Elsevier, vol. 143(C), pages 1035-1052.
- Ma, Yong & Zhu, Yuanyao & Zhang, Aiming & Hu, Chao & Liu, Sen & Li, Zhengyu, 2022. "Hydrodynamic performance of vertical axis hydrokinetic turbine based on Taguchi method," Renewable Energy, Elsevier, vol. 186(C), pages 573-584.
- Yang, Min-Hsiung & Huang, Guan-Ming & Yeh, Rong-Hua, 2016. "Performance investigation of an innovative vertical axis turbine consisting of deflectable blades," Applied Energy, Elsevier, vol. 179(C), pages 875-887.
- Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
- Zdankus, Narimantas & Punys, Petras & Zdankus, Tadas, 2014. "Conversion of lowland river flow kinetic energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 121-130.
- Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
- Rasgianti & Mukhtasor & Dendy Satrio, 2024. "The Influence of Structural Parameters on the Ultimate Strength Capacity of a Designed Vertical Axis Turbine Blade for Ocean Current Power Generators," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
- Guo, Jia & Zeng, Pan & Lei, Liping, 2019. "Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments," Energy, Elsevier, vol. 174(C), pages 553-561.
More about this item
Keywords
cross-flow turbine; vertical axis turbine; fluid–structure interaction; marine renewable energy; particle image velocimetry;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3693-:d:1132693. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.