IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2035-d347639.html
   My bibliography  Save this article

Improved PSO: A Comparative Study in MPPT Algorithm for PV System Control under Partial Shading Conditions

Author

Listed:
  • Wafa Hayder

    (Department of Electrical Engineering, National Engineering School of Gabes, 6029 Gabes, Tunisia)

  • Emanuele Ogliari

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Alberto Dolara

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Aycha Abid

    (Department of Electrical Engineering, National Engineering School of Gabes, 6029 Gabes, Tunisia)

  • Mouna Ben Hamed

    (Department of Electrical Engineering, National Engineering School of Gabes, 6029 Gabes, Tunisia)

  • Lasaad Sbita

    (Department of Electrical Engineering, National Engineering School of Gabes, 6029 Gabes, Tunisia)

Abstract

This paper deals with the implementation and analysis of a new maximum power point tracking (MPPT) control method, which is tested under variable climatic conditions. This new MPPT strategy has been created for photovoltaic systems based on Particle Swarm Optimization (PSO). The novel Improved Particle Swarm Optimization (IPSO) algorithm is tested in several simulations which have been implemented in view of the various system responses such as: voltage, current, and power. The performances of the proposed IPSO algorithm have been completed and compared with results of well-established methods adopted in the literature showing a higher accuracy.

Suggested Citation

  • Wafa Hayder & Emanuele Ogliari & Alberto Dolara & Aycha Abid & Mouna Ben Hamed & Lasaad Sbita, 2020. "Improved PSO: A Comparative Study in MPPT Algorithm for PV System Control under Partial Shading Conditions," Energies, MDPI, vol. 13(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2035-:d:347639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ishaque, Kashif & Salam, Zainal, 2013. "A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 475-488.
    2. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    3. Larbes, C. & Aït Cheikh, S.M. & Obeidi, T. & Zerguerras, A., 2009. "Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system," Renewable Energy, Elsevier, vol. 34(10), pages 2093-2100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Niccolai & Alberto Dolara & Emanuele Ogliari, 2021. "Hybrid PV Power Forecasting Methods: A Comparison of Different Approaches," Energies, MDPI, vol. 14(2), pages 1-18, January.
    2. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    3. Amit Kumar Sharma & Rupendra Kumar Pachauri & Sushabhan Choudhury & Ahmad Faiz Minai & Majed A. Alotaibi & Hasmat Malik & Fausto Pedro García Márquez, 2023. "Role of Metaheuristic Approaches for Implementation of Integrated MPPT-PV Systems: A Comprehensive Study," Mathematics, MDPI, vol. 11(2), pages 1-48, January.
    4. Wafa Hayder & Dezso Sera & Emanuele Ogliari & Abderezak Lashab, 2022. "On Improved PSO and Neural Network P&O Methods for PV System under Shading and Various Atmospheric Conditions," Energies, MDPI, vol. 15(20), pages 1-15, October.
    5. Zulfiqar Ali & Syed Zagam Abbas & Anzar Mahmood & Syed Wajahat Ali & Syed Bilal Javed & Chun-Lien Su, 2023. "A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions," Energies, MDPI, vol. 16(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    2. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    3. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Andrés Tobón & Julián Peláez-Restrepo & Juan P. Villegas-Ceballos & Sergio Ignacio Serna-Garcés & Jorge Herrera & Asier Ibeas, 2017. "Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods," Energies, MDPI, vol. 10(9), pages 1-15, September.
    5. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
    6. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    7. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    8. Amjad Ali & Kashif Irshad & Mohammad Farhan Khan & Md Moinul Hossain & Ibrahim N. A. Al-Duais & Muhammad Zeeshan Malik, 2021. "Artificial Intelligence and Bio-Inspired Soft Computing-Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    9. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    10. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    11. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    12. Noureddine Bouarroudj & Djamel Boukhetala & Vicente Feliu-Batlle & Fares Boudjema & Boualam Benlahbib & Bachir Batoun, 2019. "Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System," Energies, MDPI, vol. 12(14), pages 1-19, July.
    13. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    14. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    15. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    16. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    17. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    18. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    19. Celikel, Resat & Yilmaz, Musa & Gundogdu, Ahmet, 2022. "A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions," Renewable Energy, Elsevier, vol. 184(C), pages 361-373.
    20. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2035-:d:347639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.