IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3486-d1125089.html
   My bibliography  Save this article

Knowledge Discovery to Support WTI Crude Oil Price Risk Management

Author

Listed:
  • Radosław Puka

    (Faculty of Management, AGH University of Krakow, 30-059 Kraków, Poland)

  • Bartosz Łamasz

    (Faculty of Management, AGH University of Krakow, 30-059 Kraków, Poland)

  • Iwona Skalna

    (Faculty of Management, AGH University of Krakow, 30-059 Kraków, Poland)

  • Beata Basiura

    (Faculty of Management, AGH University of Krakow, 30-059 Kraków, Poland)

  • Jerzy Duda

    (Faculty of Management, AGH University of Krakow, 30-059 Kraków, Poland)

Abstract

The high volatility of commodity prices and various problems that the energy sector has to deal with in the era of COVID-19 have significantly increased the risk of oil price changes. These changes are of the main concern of companies for which oil is the main input in the production process, and therefore oil price determines the production costs. The main goal of this paper is to discover decision rules for a buyer of American WTI (West Texas Intermediate) crude oil call options. The presented research uses factors characterizing the option price, such as implied volatility and option sensitivity factors (delta, gamma, vega, and theta, known as “Greeks”). The performed analysis covers the years 2008–2022 and options with an exercise period up to three months. The decision rules are discovered using association analysis and are evaluated in terms of the three investment efficiency indicators: total payoff, average payoff, and return on investment. The results show the existence of certain ranges of the analyzed parameters for which the mentioned efficiency indicators reached particularly high values. The relationships discovered and recorded in the form of decision rules can be effectively used or adapted by practitioners to support their decisions in oil price risk management.

Suggested Citation

  • Radosław Puka & Bartosz Łamasz & Iwona Skalna & Beata Basiura & Jerzy Duda, 2023. "Knowledge Discovery to Support WTI Crude Oil Price Risk Management," Energies, MDPI, vol. 16(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3486-:d:1125089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    5. Hibbert, Ann Marie & Daigler, Robert T. & Dupoyet, Brice, 2008. "A behavioral explanation for the negative asymmetric return-volatility relation," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2254-2266, October.
    6. Bartosz Łamasz & Natalia Iwaszczuk, 2020. "The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: The Case of WTI Crude Oil Market," Energies, MDPI, vol. 13(20), pages 1-23, October.
    7. Soini, Vesa & Lorentzen, Sindre, 2019. "Option prices and implied volatility in the crude oil market," Energy Economics, Elsevier, vol. 83(C), pages 515-539.
    8. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Using Artificial Neural Networks to Support the Decision-Making Process of Buying Call Options Considering Risk Appetite," Energies, MDPI, vol. 14(24), pages 1-24, December.
    9. Seungho Baek & Kwan Yong Lee, 2021. "The risk transmission of COVID-19 in the US stock market," Applied Economics, Taylor & Francis Journals, vol. 53(17), pages 1976-1990, April.
    10. Costas Siriopoulos & Athanasios Fassas, 2013. "Dynamic relations of uncertainty expectations: a conditional assessment of implied volatility indices," Review of Derivatives Research, Springer, vol. 16(3), pages 233-266, October.
    11. Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Souza, Rodrigo da Silva & Fry-McKibbin, Renée, 2021. "Global liquidity and commodity market interactions: Macroeconomic effects on a commodity exporting emerging market," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 781-800.
    14. Alqahtani, Abdullah & Selmi, Refk & Hongbing, Ouyang, 2021. "The financial impacts of jump processes in the crude oil price: Evidence from G20 countries in the pre- and post-COVID-19," Resources Policy, Elsevier, vol. 72(C).
    15. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
    16. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    17. Maghyereh, Aktham I. & Awartani, Basel & Bouri, Elie, 2016. "The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 57(C), pages 78-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartosz Sawik, 2024. "Optimizing Last-Mile Delivery: A Multi-Criteria Approach with Automated Smart Lockers, Capillary Distribution and Crowdshipping," Logistics, MDPI, vol. 8(2), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Łamasz & Natalia Iwaszczuk, 2020. "The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: The Case of WTI Crude Oil Market," Energies, MDPI, vol. 13(20), pages 1-23, October.
    2. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    3. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.
    4. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    5. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
    6. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.
    9. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    10. Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
    11. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
    12. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    13. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    14. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    15. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    16. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    17. Nikola Gradojevic & Dragan Kukolj & Ramazan Gencay, 2011. "Clustering and Classification in Option Pricing," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 3(2), pages 109-128, October.
    18. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    19. Jeonggyu Huh, 2018. "Pricing Options with Exponential Levy Neural Network," Papers 1802.06520, arXiv.org, revised Sep 2018.
    20. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3486-:d:1125089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.