IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3355-d1120352.html
   My bibliography  Save this article

Interrelated Solar and Thermal Plant Autonomous Generation Control Utilizing Metaheuristic Optimization

Author

Listed:
  • Sanjiv Kumar Jain

    (Electrical Engineering Department, Medi-Caps University, Indore 453331, Madhya Pradesh, India)

  • Sandeep Bhongade

    (Electrical Engineering Department, Shri G. S. Institute of Technology and Science, Indore 452001, Madhya Pradesh, India)

  • Shweta Agrawal

    (Institute of Advance Computing, Sage University, Indore 452020, Madhya Pradesh, India)

  • Abolfazl Mehbodniya

    (Department of Electronics and Communication Engineering, Kuwait College of Science and Technology (KCST), Doha 20185145, Kuwait)

  • Bhisham Sharma

    (Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India)

  • Subrata Chowdhury

    (Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies, Chittoor 517127, Andhra Pradesh, India)

  • Julian L. Webber

    (Department of Electronics and Communication Engineering, Kuwait College of Science and Technology (KCST), Doha 20185145, Kuwait)

Abstract

In this study, the load frequency control of a two-area thermal generation system based on renewable energy sources is considered. When solar generation is used in one of the control areas, the system becomes nonlinear and complicated. Zero deviations in the frequencies and the flow of power through the tie lines are achieved by considering load disturbances. A novel grey wolf optimizer, which is a metaheuristic algorithm motivated by grey wolves is utilized for tuning the controller gains. The proportional, integral, and derivative gains values are optimized for the two-area Solar integrated Thermal Plant (STP). As the load connected to the system varies continuously with time, random load variation is also applied to observe the effectiveness of the proposed optimization method. Sensitivity analyses have also been adopted with the deviation in the time constants of different systems. Inertia constant variations of both areas are considered from −25% to +25%, with or without STP. The proposed algorithm shows good dynamic performance as shown from the simulation results in terms of settling time, overshoot values, and undershoot values. The power in the tie line achieves zero deviation quite rapidly in solar-based cases compared to those without STP.

Suggested Citation

  • Sanjiv Kumar Jain & Sandeep Bhongade & Shweta Agrawal & Abolfazl Mehbodniya & Bhisham Sharma & Subrata Chowdhury & Julian L. Webber, 2023. "Interrelated Solar and Thermal Plant Autonomous Generation Control Utilizing Metaheuristic Optimization," Energies, MDPI, vol. 16(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3355-:d:1120352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    2. Pankaj Verma & Nitish Katal & Bhisham Sharma & Subrata Chowdhury & Abolfazl Mehbodniya & Julian L. Webber & Ali Bostani, 2022. "Voltage Rise Mitigation in PV Rich LV Distribution Networks Using DC/DC Converter Level Active Power Curtailment Method," Energies, MDPI, vol. 15(16), pages 1-16, August.
    3. Abdul Latif & Arup Pramanik & Dulal Chandra Das & Israfil Hussain & Sudhanshu Ranjan, 2018. "Plug in hybrid vehicle-wind-diesel autonomous hybrid power system: frequency control using FA and CSA optimized controller," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1147-1158, October.
    4. Buzás, J. & Kicsiny, R., 2014. "Transfer functions of solar collectors for dynamical analysis and control design," Renewable Energy, Elsevier, vol. 68(C), pages 146-155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    3. Shreya Vishnoi & Srete Nikolovski & More Raju & Mukesh Kumar Kirar & Ankur Singh Rana & Pawan Kumar, 2023. "Frequency Stabilization in an Interconnected Micro-Grid Using Smell Agent Optimization Algorithm-Tuned Classical Controllers Considering Electric Vehicles and Wind Turbines," Energies, MDPI, vol. 16(6), pages 1-25, March.
    4. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    5. Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
    6. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    7. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    8. Seung-Taek Lim & Ki-Yeon Lee & Dong-Ju Chae & Sung-Hun Lim, 2022. "Design of Mid-Point Ground with Resistors and Capacitors in Mono-Polar LVDC System," Energies, MDPI, vol. 15(22), pages 1-20, November.
    9. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.
    10. Peiró, Gerard & Prieto, Cristina & Gasia, Jaume & Jové, Aleix & Miró, Laia & Cabeza, Luisa F., 2018. "Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation," Renewable Energy, Elsevier, vol. 121(C), pages 236-248.
    11. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    12. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    13. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
    14. Dadak, Ali & Mousavi, Seyed Ali & Mehrpooya, Mehdi & Kasaeian, Alibakhsh, 2022. "Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system," Renewable Energy, Elsevier, vol. 201(P1), pages 1-20.
    15. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    16. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    17. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2016. "Experimental analysis of charging and discharging processes, with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup," Applied Energy, Elsevier, vol. 178(C), pages 394-403.
    18. Sani, Elisa & Mercatelli, Luca & Meucci, Marco & Balbo, Andrea & Musa, Clara & Licheri, Roberta & Orrù, Roberto & Cao, Giacomo, 2016. "Optical properties of dense zirconium and tantalum diborides for solar thermal absorbers," Renewable Energy, Elsevier, vol. 91(C), pages 340-346.
    19. Zhu, Yong & Zhai, Rongrong & Qi, Jiawei & Yang, Yongping & Reyes-Belmonte, M.A. & Romero, Manuel & Yan, Qin, 2017. "Annual performance of solar tower aided coal-fired power generation system," Energy, Elsevier, vol. 119(C), pages 662-674.
    20. Li, Qing & Bai, Fengwu & Yang, Bei & Wang, Zhifeng & El Hefni, Baligh & Liu, Sijie & Kubo, Syuichi & Kiriki, Hiroaki & Han, Mingxu, 2016. "Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant," Applied Energy, Elsevier, vol. 178(C), pages 281-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3355-:d:1120352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.