IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3289-d1117405.html
   My bibliography  Save this article

Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP

Author

Listed:
  • João Paulo N. Torres

    (Academia Militar/CINAMIL, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal
    Instituto de Telecomunicações, 1049-001 Lisbon, Portugal)

  • Ricardo A. Marques Lameirinhas

    (Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
    Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal)

  • Catarina Pinho Correia Valério Bernardo

    (Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
    Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal)

  • Sofia Lima Martins

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal)

  • Pedro Mendonça dos Santos

    (Academia Militar/CINAMIL, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal
    Instituto de Telecomunicações, 1049-001 Lisbon, Portugal)

  • Helena Isabel Veiga

    (Academia Militar/CINAMIL, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal)

  • Maria João Marques Martins

    (Academia Militar/CINAMIL, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal)

  • Paula Manuela Santos do Rego Figueiredo

    (Academia Militar/CINAMIL, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal)

Abstract

The performance of photovoltaic solar cells is usually analyzed using continuous models, for instance, 1M5P. I-V and P-V curves are fitted by a mathematical expression from the electrical model. In the case of 1M5P, characteristics are fitted using five parameters that are obtained using a small number of I-V points from a wider set of data, keeping the curve shape given by the mathematical expression from the model. A novel model was recently proposed to overcome this issue. The d1MxP model is based on the discretization of the electrical behavior of the diodes in models such as 1M5P. The d1MxP methodology is equivalent to an analytical incremental calculation and since it connects the given points, the model error should be lower than the one obtained using models as 1M5P. It is based on the connection of adjacent points (with small voltage differences) instead of having the entire voltage range represented by some parameters (as the continuous models do, for instance, 1M5P). In this work, the d1MxP model is applied to perovskite solar cells and paint-type dye-sensitized solar cells. The aim is to analyze the behavior of the discrete model in different third-generation solar cells since their performance cannot be well characterized by the 1M5P model. The accuracy on the maximum power point is relevant, resulting in perovskite solar cells, an improvement of up to 2.61% and, in paint-type dye-sensitized solar cells, an increase of up to 5.03%.

Suggested Citation

  • João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Catarina Pinho Correia Valério Bernardo & Sofia Lima Martins & Pedro Mendonça dos Santos & Helena Isabel Veiga & Maria João Marques Martins & Pa, 2023. "Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP," Energies, MDPI, vol. 16(7), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3289-:d:1117405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiago Alves & João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Carlos A. F. Fernandes, 2021. "Different Techniques to Mitigate Partial Shading in Photovoltaic Panels," Energies, MDPI, vol. 14(13), pages 1-25, June.
    2. João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Catarina P. Correia V. Bernardo & Helena Isabel Veiga & Pedro Mendonça dos Santos, 2023. "A Discrete Electrical Model for Photovoltaic Solar Cells—d1MxP," Energies, MDPI, vol. 16(4), pages 1-14, February.
    3. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.
    4. Catarina Pinho Correia Valério Bernardo & Ricardo A. Marques Lameirinhas & João Paulo Neto Torres & António Baptista, 2023. "The Shading Influence on the Economic Viability of a Real Photovoltaic System Project," Energies, MDPI, vol. 16(6), pages 1-17, March.
    5. Rui Castro & Miguel Silva, 2021. "Experimental and Theoretical Validation of One Diode and Three Parameters–Based PV Models," Energies, MDPI, vol. 14(8), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardo Gonçalves & João F. P. Fernandes & João Paulo N. Torres & Ricardo A. Marques Lameirinhas, 2023. "Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels," Energies, MDPI, vol. 16(12), pages 1-17, June.
    2. João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Catarina P. Correia V. Bernardo & Helena Isabel Veiga & Pedro Mendonça dos Santos, 2023. "A Discrete Electrical Model for Photovoltaic Solar Cells—d1MxP," Energies, MDPI, vol. 16(4), pages 1-14, February.
    3. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.
    4. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    5. Yousef Alharbi & Ahmed Darwish & Xiandong Ma, 2023. "A Comprehensive Review of Distributed MPPT for Grid-Tied PV Systems at the Sub-Module Level," Energies, MDPI, vol. 16(14), pages 1-23, July.
    6. Catarina Pinho Correia Valério Bernardo & Ricardo A. Marques Lameirinhas & João Paulo Neto Torres & António Baptista, 2023. "The Shading Influence on the Economic Viability of a Real Photovoltaic System Project," Energies, MDPI, vol. 16(6), pages 1-17, March.
    7. Cheng-En Ye & Cheng-Chi Tai & Yu-Pei Huang, 2023. "Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology," Energies, MDPI, vol. 16(13), pages 1-16, June.
    8. João Paulo N. Torres & Ana Sofia De Jesus & Ricardo A. Marques Lameirinhas, 2022. "How to Improve an Offshore Wind Station," Energies, MDPI, vol. 15(13), pages 1-20, July.
    9. Abid Ali & Maïté Volatier & Maxime Darnon, 2023. "Optimal Sizing and Assessment of Standalone Photovoltaic Systems for Community Health Centers in Mali," Post-Print hal-04210722, HAL.
    10. Catarina Pinho Correia Valério Bernardo & Ricardo A. Marques Lameirinhas & João Paulo N. Torres & António Baptista & Maria João Marques Martins, 2024. "Experimental Analysis of the Light Wavelength’s Impact on the Performance of a Silicon Solar Cell," Energies, MDPI, vol. 17(9), pages 1-20, April.
    11. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.
    12. Hamoud Alafnan & Xiaoze Pei & Diaa-Eldin A. Mansour & Moanis Khedr & Wenjuan Song & Ibrahim Alsaleh & Abdullah Albaker & Mansoor Alturki & Xianwu Zeng, 2023. "Impact of Copper Stabilizer Thickness on SFCL Performance with PV-Based DC Systems Using a Multilayer Thermoelectric Model," Sustainability, MDPI, vol. 15(9), pages 1-15, April.
    13. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.
    14. Tiago H. de A. Mateus & José A. Pomilio & Ruben B. Godoy & João O. P. Pinto, 2022. "VSG Control Applied to Seven-Level PV Inverter for Partial Shading Impact Abatement," Energies, MDPI, vol. 15(17), pages 1-14, September.
    15. Michel Piliougine & Paula Sánchez-Friera & Giovanni Spagnuolo, 2024. "Comparative of IEC 60891 and Other Procedures for Temperature and Irradiance Corrections to Measured I–V Characteristics of Photovoltaic Devices," Energies, MDPI, vol. 17(3), pages 1-67, January.
    16. Abdelhady Ramadan & Salah Kamel & I. Hamdan & Ahmed M. Agwa, 2022. "A Novel Intelligent ANFIS for the Dynamic Model of Photovoltaic Systems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    17. Carlos Merino & Rui Castro, 2024. "Optimization of a Hybrid Solar–Wind Microgrid for Sustainable Development: A Case Study in Antofagasta, Chile," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    18. Sousa, Jorge & Lagarto, João & Camus, Cristina & Viveiros, Carla & Barata, Filipe & Silva, Pedro & Alegria, Ricardo & Paraíba, Orlando, 2023. "Renewable energy communities optimal design supported by an optimization model for investment in PV/wind capacity and renewable electricity sharing," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3289-:d:1117405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.