IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p2960-d1105849.html
   My bibliography  Save this article

Early Warning Method and Fire Extinguishing Technology of Lithium-Ion Battery Thermal Runaway: A Review

Author

Listed:
  • Kuo Wang

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100084, China)

  • Dongxu Ouyang

    (College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China)

  • Xinming Qian

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100084, China)

  • Shuai Yuan

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100084, China)

  • Chongye Chang

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100084, China)

  • Jianqi Zhang

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100084, China)

  • Yifan Liu

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100084, China)

Abstract

Lithium-ion batteries (LIBs) are widely used in electrochemical energy storage and in other fields. However, LIBs are prone to thermal runaway (TR) under abusive conditions, which may lead to fires and even explosion accidents. Given the severity of TR hazards for LIBs, early warning and fire extinguishing technologies for battery TR are comprehensively reviewed in this paper. First, the TR reaction mechanism and hazards of LIBs are discussed. Second, the TR early warning and monitoring methods of LIBs are summarized in five aspects consisting of acoustic, heat, force, electricity, and gas. In addition, to reduce the fire and explosion hazards caused by the TR of LIBs, the highly efficient extinguishing agents for LIBs are summarized. Finally, the early warning technology and fire extinguishing agent are proposed, which provides a reference for the hazard prevention and control of energy storage systems.

Suggested Citation

  • Kuo Wang & Dongxu Ouyang & Xinming Qian & Shuai Yuan & Chongye Chang & Jianqi Zhang & Yifan Liu, 2023. "Early Warning Method and Fire Extinguishing Technology of Lithium-Ion Battery Thermal Runaway: A Review," Energies, MDPI, vol. 16(7), pages 1-35, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2960-:d:1105849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/2960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/2960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ulrich Schadeck & Kanat Kyrgyzbaev & Heiko Zettl & Thorsten Gerdes & Ralf Moos, 2018. "Flexible, Heat-Resistant, and Flame-Retardant Glass Fiber Nonwoven/Glass Platelet Composite Separator for Lithium-Ion Batteries," Energies, MDPI, vol. 11(4), pages 1-14, April.
    2. Ximing Cheng & Tao Li & Xusong Ruan & Zhenpo Wang, 2019. "Thermal Runaway Characteristics of a Large Format Lithium-Ion Battery Module," Energies, MDPI, vol. 12(16), pages 1-18, August.
    3. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    4. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    5. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    6. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    3. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    4. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    5. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
    6. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    7. Xinwei Cong & Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yan Jiang & Linjing Zhang, 2021. "A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 14(5), pages 1-21, February.
    8. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    9. Prahaladh Paniyil & Vishwas Powar & Rajendra Singh & Benjamin Hennigan & Pamela Lule & Matthew Allison & John Kimsey & Anthony Carambia & Dhruval Patel & Daniel Carrillo & Zachary Shriber & Truman Baz, 2020. "Photovoltaics- and Battery-Based Power Network as Sustainable Source of Electric Power," Energies, MDPI, vol. 13(19), pages 1-22, September.
    10. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    12. Han, Gaoce & Yan, Jize & Guo, Zhen & Greenwood, David & Marco, James & Yu, Yifei, 2021. "A review on various optical fibre sensing methods for batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Akash Samanta & Sheldon S. Williamson, 2021. "A Comprehensive Review of Lithium-Ion Cell Temperature Estimation Techniques Applicable to Health-Conscious Fast Charging and Smart Battery Management Systems," Energies, MDPI, vol. 14(18), pages 1-25, September.
    15. Carla Menale & Stefano Constà & Vincenzo Sglavo & Livia Della Seta & Roberto Bubbico, 2022. "Experimental Investigation of Overdischarge Effects on Commercial Li-Ion Cells," Energies, MDPI, vol. 15(22), pages 1-16, November.
    16. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    17. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Li, Shen & Marzook, Mohamed Waseem & Zhang, Cheng & Offer, Gregory J. & Marinescu, Monica, 2023. "How to enable large format 4680 cylindrical lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
    19. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    20. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2960-:d:1105849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.