IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2885-d1103015.html
   My bibliography  Save this article

Oscillating-Foil Turbine Performance Improvement by the Addition of Double Gurney Flaps and Kinematics Optimization

Author

Listed:
  • Benoît Genest

    (CFD Laboratory LMFN, Department of Mechanical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada)

  • Guy Dumas

    (CFD Laboratory LMFN, Department of Mechanical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada)

Abstract

Refinement of the performance of a fully constrained oscillating-foil turbine is carried out via the addition of passive double Gurney flaps. Flaps ranging from h GF = 0.005 c to 0.075 c are added at the trailing edge of the NACA 0015 blade of turbines operating in high-efficiency regimes without leading-edge vortex shedding (LEVS). Performance improvements are determined using 2D numerical simulations with an unsteady Reynolds-averaged Navier–Stokes (URANS) approach. Based on a recent study of the double Gurney flaps on stationary foils, instantaneous power-extraction coefficients are analyzed and modifications of the foil’s kinematics are tested in order to fully benefit from the Gurney flaps’ performance improvements. Modifications to the pivot point location of the foil, to the pitch-heave phase, and to the pitching amplitude of the turbine are considered. Improvements are found for all turbine cases studied, including some of the previously optimal cases reported in the literature. The double Gurney flaps, being a simple and passive device, offer great practical application potential. They represent an efficient refinement to already robust and high-performance oscillating-foil turbines operating without the perceived benefit of leading-edge vortex shedding, an essential characteristic for actual, finite-span applications.

Suggested Citation

  • Benoît Genest & Guy Dumas, 2023. "Oscillating-Foil Turbine Performance Improvement by the Addition of Double Gurney Flaps and Kinematics Optimization," Energies, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2885-:d:1103015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    2. Jiang, W. & Zhang, D. & Xie, Y.H., 2016. "Numerical investigation into the effects of arm motion and camber on a self-induced oscillating hydrofoil," Energy, Elsevier, vol. 115(P1), pages 1010-1021.
    3. Xie, Y.H. & Jiang, W. & Lu, K. & Zhang, D., 2016. "Numerical investigation into energy extraction of flapping airfoil with Gurney flaps," Energy, Elsevier, vol. 109(C), pages 694-702.
    4. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    5. Kinsey, T. & Dumas, G. & Lalande, G. & Ruel, J. & Méhut, A. & Viarouge, P. & Lemay, J. & Jean, Y., 2011. "Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils," Renewable Energy, Elsevier, vol. 36(6), pages 1710-1718.
    6. Sitorus, Patar Ebenezer & Ko, Jin Hwan, 2019. "Power extraction performance of three types of flapping hydrofoils at a Reynolds number of 1.7E6," Renewable Energy, Elsevier, vol. 132(C), pages 106-118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
    2. Arun Raj Shanmugam & Ki Sun Park & Chang Hyun Sohn, 2023. "Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs," Energies, MDPI, vol. 16(8), pages 1-29, April.
    3. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.
    4. Xu, Bin & Ma, Qiyu & Huang, Diangui, 2021. "Research on energy harvesting properties of a diffuser-augmented flapping wing," Renewable Energy, Elsevier, vol. 180(C), pages 271-280.
    5. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    6. Wu, Jie & Shen, Meng & Jiang, Lan, 2020. "Role of synthetic jet control in energy harvesting capability of a semi-active flapping airfoil," Energy, Elsevier, vol. 208(C).
    7. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    8. Zhang, Yue & Yang, Fuchun & Li, Yuetai & Qiu, Wenlei, 2021. "Design and numerical investigation of a multi-directional energy-harvesting device for UUVs," Energy, Elsevier, vol. 214(C).
    9. Xu, Wenhua & Xu, Guodong & Duan, Wenyang & Song, Zhijie & Lei, Jie, 2019. "Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils," Energy, Elsevier, vol. 174(C), pages 375-385.
    10. Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).
    11. Ye, Xuemin & Hu, Jiami & Zheng, Nan & Li, Chunxi, 2023. "Numerical study on aerodynamic performance and noise of wind turbine airfoils with serrated gurney flap," Energy, Elsevier, vol. 262(PB).
    12. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2019. "Numerical investigation into power extraction by a fully passive oscillating foil with double generators," Renewable Energy, Elsevier, vol. 133(C), pages 32-43.
    13. Kim, Jihoon & Kim, Dong-Geon & Jung, Sejin & Moon, Seong Min & Ko, Jin Hwan, 2023. "Experimental study of a fully passive flapping hydrofoil turbine with a dual configuration and a coupling mechanism," Renewable Energy, Elsevier, vol. 208(C), pages 191-202.
    14. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    15. Boudreau, Matthieu & Picard-Deland, Maxime & Dumas, Guy, 2020. "A parametric study and optimization of the fully-passive flapping-foil turbine at high Reynolds number," Renewable Energy, Elsevier, vol. 146(C), pages 1958-1975.
    16. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    17. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    18. Liu, Zhen & Qu, Hengliang, 2022. "Numerical study on a coupled-pitching flexible hydrofoil under the semi-passive mode," Renewable Energy, Elsevier, vol. 189(C), pages 339-358.
    19. Träsch, Martin & Déporte, Astrid & Delacroix, Sylvain & Germain, Grégory & Drevet, Jean-Baptiste, 2019. "Analytical linear modelization of a buckled undulating membrane tidal energy converter," Renewable Energy, Elsevier, vol. 130(C), pages 245-255.
    20. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2020. "Numerical investigation into the energy extraction characteristics of 3D self-induced oscillating foil," Renewable Energy, Elsevier, vol. 148(C), pages 60-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2885-:d:1103015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.