IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2796-d1100239.html
   My bibliography  Save this article

Quantitative Prediction of Braided Sandbodies Based on Probability Fusion and Multi-Point Geostatistics

Author

Listed:
  • Qiangqiang Kang

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
    College of Geoscience, China University of Petroleum (Beijing), Beijing 102249, China)

  • Jiagen Hou

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
    College of Geoscience, China University of Petroleum (Beijing), Beijing 102249, China)

  • Liqin Liu

    (Dagang Oil Field of CNPC, Tiajin 300270, China)

  • Mingqiu Hou

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

  • Yuming Liu

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
    College of Geoscience, China University of Petroleum (Beijing), Beijing 102249, China)

Abstract

Predicting the spatial distribution of braided fluvial facies reservoirs is of paramount significance for oil and gas exploration and development. Given that seismic materials enjoy an advantage in dense spatial sampling, many methods have been proposed to predict the reservoir distribution based on different seismic attributes. Nevertheless, different seismic attributes have different sensitivities to the reservoirs, and informational redundancy between them makes it difficult to combine them effectively. Regarding reservoir modeling, multi-point geostatistics represents the distribution characteristics of the braided fluvial facies reservoirs effectively. Despite this, it is very difficult to build high-quality training images. Hence, this paper proposes a three-step method of predicting braided fluvial facies reservoirs based on probability fusion and multi-point geostatistics. Firstly, similar statistical data of modern sedimentation and field paleo-outcrops were processed under the guidance of the sedimentation pattern to construct reservoir training images suitable for the target stratum in the research area. Secondly, each linear combination of selected seismic attributes was demarcated to calculate the principal component value and work out the elementary conditional probability. Lastly, the PR probability integration approach was employed to combine all conditional probabilities and calculate the joint probability. Then the joint probability was combined with training images to build a reservoir distribution model through multi-point geostatistics. We illustrated the detailed workflow of our new method by applying it to a braided fluvial reservoir modeling case in the Bohai Bay Basin, East China. The new method reduced the error of prediction results by 32% and 46% respectively, and the error of water content by 36.5% and 60.3%. This method is a potentially effective technique to predict and characterize the reservoir spatial distribution and modeling in other oil fields with the same geological background.

Suggested Citation

  • Qiangqiang Kang & Jiagen Hou & Liqin Liu & Mingqiu Hou & Yuming Liu, 2023. "Quantitative Prediction of Braided Sandbodies Based on Probability Fusion and Multi-Point Geostatistics," Energies, MDPI, vol. 16(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2796-:d:1100239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhihong Wang & Tiansheng Chen & Xun Hu & Lixin Wang & Yanshu Yin, 2022. "A Multi-Point Geostatistical Seismic Inversion Method Based on Local Probability Updating of Lithofacies," Energies, MDPI, vol. 15(1), pages 1-20, January.
    2. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Wang & Chunjing Yan & Zhengjun Zhu & Shaohua Li & Duanchuan Lv & Xixin Wang & Dawang Liu, 2023. "Interpretation of Sand Body Architecture in Complex Fault Block Area of Craton Basin: Case Study of TIII in Sangtamu Area, Tarim Basin," Energies, MDPI, vol. 16(8), pages 1-15, April.
    2. Chuanyou Zhou & Yongming He & Lu Wang & Shaohua Li & Siyu Yu & Yisheng Liu & Wei Dong, 2024. "A Method for Enhancing the Simulation Continuity of the Snesim Algorithm in 2D Using Multiple Search Trees," Energies, MDPI, vol. 17(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juanjuan Qin & Liguo Ren & Liangjie Xia, 2017. "Carbon Emission Reduction and Pricing Strategies of Supply Chain under Various Demand Forecasting Scenarios," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-27, February.
    2. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    3. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    4. Stephen C. Hora, 2013. "A Note on the Aggregation of Event Probabilities," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 909-914, May.
    5. Ali Mosleh & George Apostolakis, 1986. "The Assessment of Probability Distributions from Expert Opinions with an Application to Seismic Fragility Curves," Risk Analysis, John Wiley & Sons, vol. 6(4), pages 447-461, December.
    6. Yue, Xiaohang & Liu, John, 2006. "Demand forecast sharing in a dual-channel supply chain," European Journal of Operational Research, Elsevier, vol. 174(1), pages 646-667, October.
    7. Jaspersen, Johannes G., 2022. "Convex combinations in judgment aggregation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 780-794.
    8. Bergemann, Dirk & Ottaviani, Marco, 2021. "Information Markets and Nonmarkets," CEPR Discussion Papers 16459, C.E.P.R. Discussion Papers.
    9. Robert L. Winkler & Robert T. Clemen, 2004. "Multiple Experts vs. Multiple Methods: Combining Correlation Assessments," Decision Analysis, INFORMS, vol. 1(3), pages 167-176, September.
    10. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
    11. Dr. James Mitchell, 2009. "Measuring Output Gap Uncertainty," National Institute of Economic and Social Research (NIESR) Discussion Papers 342, National Institute of Economic and Social Research.
    12. Mark Freeman & Ben Groom, 2015. "Using equity premium survey data to estimate future wealth," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 665-693, November.
    13. Xiaowei Zhu, 2017. "Outsourcing management under various demand Information Sharing scenarios," Annals of Operations Research, Springer, vol. 257(1), pages 449-467, October.
    14. Gai, Prasanna & Lou, Edmund & Wu, Sherry X., 2020. "Targeted disclosure and monetary policy flexibility: A simple model," Economics Letters, Elsevier, vol. 194(C).
    15. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    16. Lin, Shi-Woei & Bier, Vicki M., 2008. "A study of expert overconfidence," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 711-721.
    17. Paola Monari & Patrizia Agati, 2001. "Fiducial inference in combining expert judgements," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 10(1), pages 81-97, January.
    18. Jaeseob Lim & Sang-Hun Lee, 2020. "Utility and use of accuracy cues in social learning of crowd preferences," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-25, October.
    19. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    20. Tunç, Murat & Cavusoglu, Huseyin & Raghunathan, Srinivasan, 2021. "Online product reviews : Is a finer-grained rating scheme superior to a coarser one?," Other publications TiSEM ec57cbf3-7415-4427-aafc-6, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2796-:d:1100239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.