IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2413-d1086342.html
   My bibliography  Save this article

Robustly Cooperative Control of Transient Stability for Power System Considering Wind Power and Load Uncertainty by Distribution Preserving Graph Representation Learning (DPG)

Author

Listed:
  • Fang Yao

    (School of Electric Power and Architecture, Shanxi University, Taiyuan 030006, China
    School of Electrical and Electronics and Computer Engineering, University of Western Australia, Perth, WA 6009, Australia)

  • Xinan Zhang

    (School of Electrical and Electronics and Computer Engineering, University of Western Australia, Perth, WA 6009, Australia)

  • Tat Kei Chau

    (School of Electrical and Electronics and Computer Engineering, University of Western Australia, Perth, WA 6009, Australia)

  • Herbert Ho-ching Iu

    (School of Electrical and Electronics and Computer Engineering, University of Western Australia, Perth, WA 6009, Australia)

Abstract

Aiming at the influence of wind power and load uncertainty on the transient stability of a power system under low carbon mode, this paper first proposes a collaborative preventive and emergency control model of transient stability by distribution preserving graph representation learning (DPG). Second, the uncertainty set of wind power output and load demand is studied, and the mathematical form of the two-stage robust transient stability collaborative control model is proposed. Then, the latest artificial intelligence technology is embedded into the global optimization algorithm of the model so as to further improve the solving efficiency of the algorithm. Finally, based on the developed improved two-stage robust optimization framework, an effective collaborative control method for transient stability is developed. The transient stability prediction and control system developed in this project is not only conducive to large-scale wind power grid connection but also expected to make academic contributions to development of power system transient stability and practical simulation verification.

Suggested Citation

  • Fang Yao & Xinan Zhang & Tat Kei Chau & Herbert Ho-ching Iu, 2023. "Robustly Cooperative Control of Transient Stability for Power System Considering Wind Power and Load Uncertainty by Distribution Preserving Graph Representation Learning (DPG)," Energies, MDPI, vol. 16(5), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2413-:d:1086342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xingmin Li & Hongwei Li & Shuaibing Li & Ziwei Jiang & Xiping Ma, 2021. "Review on Reactive Power and Voltage Optimization of Active Distribution Network with Renewable Distributed Generation and Time-Varying Loads," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-18, November.
    2. Sayed, Ahmed R. & Wang, Cheng & Bi, Tianshu, 2019. "Resilient operational strategies for power systems considering the interactions with natural gas systems," Applied Energy, Elsevier, vol. 241(C), pages 548-566.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bohong & Klemeš, Jiří Jaromír & Liang, Yongtu & Yuan, Meng & Zhang, Haoran & Liu, Jiayi, 2020. "Implementing hydrogen injection in coal-dominated regions: Supply chain optimisation and reliability analysis," Energy, Elsevier, vol. 201(C).
    2. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    3. Gillessen, B. & Heinrichs, H. & Hake, J.-F. & Allelein, H.-J., 2019. "Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Omar Makram Kamel & Ahmed A. Zaki Diab & Mohamed Metwally Mahmoud & Ameena Saad Al-Sumaiti & Hamdy M. Sultan, 2023. "Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems," Energies, MDPI, vol. 16(4), pages 1-19, February.
    7. Wang, Han & Hou, Kai & Zhao, Junbo & Yu, Xiaodan & Jia, Hongjie & Mu, Yunfei, 2022. "Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters," Applied Energy, Elsevier, vol. 315(C).
    8. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).
    9. Huang, Gang & Wang, Jianhui & Wang, Cheng & Guo, Chuangxin, 2021. "Cascading imbalance in coupled gas-electric energy systems," Energy, Elsevier, vol. 231(C).
    10. Zare Oskouei, Morteza & Mehrjerdi, Hasan & Babazadeh, Davood & Teimourzadeh Baboli, Payam & Becker, Christian & Palensky, Peter, 2022. "Resilience-oriented operation of power systems: Hierarchical partitioning-based approach," Applied Energy, Elsevier, vol. 312(C).
    11. Yuriy Sayenko & Ryszard Pawelek & Tetiana Baranenko, 2023. "Analysis of Reactive Power in Electrical Networks Supplying Nonlinear Fast-Varying Loads," Energies, MDPI, vol. 16(24), pages 1-13, December.
    12. Qiu, Dawei & Wang, Yi & Zhang, Tingqi & Sun, Mingyang & Strbac, Goran, 2023. "Hierarchical multi-agent reinforcement learning for repair crews dispatch control towards multi-energy microgrid resilience," Applied Energy, Elsevier, vol. 336(C).
    13. Tanja Clees, 2022. "Contingency analysis for gas transport networks with hydrogen injection," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 533-563, June.
    14. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    15. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    16. Aldarajee, Ammar H.M. & Hosseinian, Seyed H. & Vahidi, Behrooz, 2020. "A secure tri-level planner-disaster-risk-averse replanner model for enhancing the resilience of energy systems," Energy, Elsevier, vol. 204(C).
    17. Lei, Shunbo & Pozo, David & Wang, Ming-Hao & Li, Qifeng & Li, Yupeng & Peng, Chaoyi, 2022. "Power economic dispatch against extreme weather conditions: The price of resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Zakernezhad, Hamid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Optimal resilient operation of multi-carrier energy systems in electricity markets considering distributed energy resource aggregators," Applied Energy, Elsevier, vol. 299(C).
    19. Dong, Shen & Zang, Tianlei & Zhou, Buxiang & Luo, Huan & Zhou, Yi & Xiao, Xianyong, 2024. "Robust coordinated resilience enhancement strategy for communication networks of power and thermal cyber-physical systems considering decision-dependent uncertainty," Applied Energy, Elsevier, vol. 368(C).
    20. Wang, Zekai & Ding, Tao & Jia, Wenhao & Huang, Can & Mu, Chenggang & Qu, Ming & Shahidehpour, Mohammad & Yang, Yongheng & Blaabjerg, Frede & Li, Li & Wang, Kang & Chi, Fangde, 2022. "Multi-stage stochastic programming for resilient integrated electricity and natural gas distribution systems against typhoon natural disaster attacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2413-:d:1086342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.