IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2400-d1085793.html
   My bibliography  Save this article

The Origin and Occurrence of Natural Hydrogen

Author

Listed:
  • Lu Wang

    (Institute of Energy, Peking University, Beijing 100871, China)

  • Zhijun Jin

    (Institute of Energy, Peking University, Beijing 100871, China
    Sinopec Exploration and Development Research Institute, Beijing 100083, China)

  • Xiao Chen

    (Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871, China)

  • Yutong Su

    (Institute of Energy, Peking University, Beijing 100871, China)

  • Xiaowei Huang

    (Institute of Energy, Peking University, Beijing 100871, China)

Abstract

Hydrogen is an attractive, clean, sustainable energy source primarily produced via industry. At present, most reviews on hydrogen mainly focus on the preparation and storage of hydrogen, while the development and utilization of natural hydrogen will greatly reduce its cost. Natural hydrogen has been discovered in many geological environments. Therefore, based on extensive literature research, in this study, the distribution and sources of natural hydrogen were systematically sorted, and the identification method and occurrence state of natural hydrogen were examined and summarized. The results of this research show that hydrogen has been discovered in oceanic spreading centers, transform faults, passive margins, convergent margins, and intraplate settings. The primary sources of the hydrogen include alterations in Fe(II)-containing rocks, the radiolysis of water, degassed magma, and the reaction of water- and silica-containing rocks during the mechanical fracturing. Hydrogen can appear in free gas, it can be adsorbed and trapped in inclusions. Currently, natural hydrogen exploration is in its infancy. This systematic review helps to understand the origin, distribution, and occurrence pattern of natural hydrogen. In addition, it facilitates the exploration and development of natural hydrogen deposits, thus enabling the production of low-cost hydrogen.

Suggested Citation

  • Lu Wang & Zhijun Jin & Xiao Chen & Yutong Su & Xiaowei Huang, 2023. "The Origin and Occurrence of Natural Hydrogen," Energies, MDPI, vol. 16(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2400-:d:1085793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincent, Immanuel & Bessarabov, Dmitri, 2018. "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1690-1704.
    2. Francis H. Chapelle & Kathleen O'Neill & Paul M. Bradley & Barbara A. Methé & Stacy A. Ciufo & LeRoy L. Knobel & Derek R. Lovley, 2002. "A hydrogen-based subsurface microbial community dominated by methanogens," Nature, Nature, vol. 415(6869), pages 312-315, January.
    3. Santanu Kumar Dash & Suprava Chakraborty & Devaraj Elangovan, 2023. "A Brief Review of Hydrogen Production Methods and Their Challenges," Energies, MDPI, vol. 16(3), pages 1-17, January.
    4. Michael R. Perfit & Johnson R. Cann & Daniel J. Fornari & Jennifer Engels & Deborah K. Smith & W. Ian Ridley & Margo H. Edwards, 2003. "Interaction of sea water and lava during submarine eruptions at mid-ocean ridges," Nature, Nature, vol. 426(6962), pages 62-65, November.
    5. Barbara Sherwood Lollar & T. C. Onstott & G. Lacrampe-Couloume & C. J. Ballentine, 2014. "The contribution of the Precambrian continental lithosphere to global H2 production," Nature, Nature, vol. 516(7531), pages 379-382, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Wang & Zhijun Jin & Xiaowei Huang & Runchao Liu & Yutong Su & Qian Zhang, 2024. "Hydrogen Adsorption in Porous Geological Materials: A Review," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    2. Rafael d’Amore-Domenech & Isabel Carrillo & Emilio Navarro & Teresa J. Leo, 2023. "Alkaline Electrolysis for Hydrogen Production at Sea: Perspectives on Economic Performance," Energies, MDPI, vol. 16(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    3. Negar Shaya & Simon Glöser-Chahoud, 2024. "A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances," Energies, MDPI, vol. 17(16), pages 1-21, August.
    4. Daniela S. Falcão, 2023. "Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives," Energies, MDPI, vol. 16(2), pages 1-8, January.
    5. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    6. An, Qi & Jin, Zhijiang & Li, Nan & Wang, Hongchao & Schmierer, Joel & Wei, Cundi & Hu, Hongyu & Gao, Qian & Woodall, Jerry M., 2022. "Study on the liquid phase-derived activation mechanism in Al-rich alloy hydrolysis reaction for hydrogen production," Energy, Elsevier, vol. 247(C).
    7. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    8. Nihat Ege Sahin & W. J. Pech-Rodríguez & P. C. Meléndez-González & Juan Lopez Hernández & E. Rocha-Rangel, 2023. "Water Splitting as an Alternative for Electrochemical Hydrogen and Oxygen Generation: Current Status, Trends, and Challenges," Energies, MDPI, vol. 16(13), pages 1-25, June.
    9. Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
    10. Artur Pawłowski & Agnieszka Żelazna & Jarosław Żak, 2023. "Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA," Energies, MDPI, vol. 16(9), pages 1-15, April.
    11. Devan M. Nisson & Clifford C. Walters & Martha L. Chacón-Patiño & Chad R. Weisbrod & Thomas L. Kieft & Barbara Sherwood Lollar & Oliver Warr & Julio Castillo & Scott M. Perl & Errol D. Cason & Barry M, 2023. "Radiolytically reworked Archean organic matter in a habitable deep ancient high-temperature brine," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    14. Jamey Davies & Stephanus P. Du Preez & Dmitri G. Bessarabov, 2022. "The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation," Energies, MDPI, vol. 15(7), pages 1-22, March.
    15. Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
    16. Anna Król & Monika Gajec & Jadwiga Holewa-Rataj & Ewa Kukulska-Zając & Mateusz Rataj, 2024. "Hydrogen Purification Technologies in the Context of Its Utilization," Energies, MDPI, vol. 17(15), pages 1-38, August.
    17. Evgeny Solomin & Zaid Salah & Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova & Vladimir Konchakov & Alyona Olinichenko & Alexander Karelin & Tatyana Tarasova, 2023. "Ecological Hydrogen Production and Water Sterilization: An Innovative Approach to the Trigeneration of Renewable Energy Sources for Water Desalination: A Review," Energies, MDPI, vol. 16(17), pages 1-32, August.
    18. Daniel Keaney & Brigid Lucey & Karen Finn, 2024. "A Review of Environmental Challenges Facing Martian Colonisation and the Potential for Terrestrial Microbes to Transform a Toxic Extraterrestrial Environment," Challenges, MDPI, vol. 15(1), pages 1-21, January.
    19. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    20. Hou, Xiaojiang & Wang, Yi & Yang, Yanling & Hu, Rui & Yang, Guang & Feng, Lei & Suo, Guoquan, 2019. "Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2400-:d:1085793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.