Optimization-Based Operation of District Heating Networks: A Case Study for Two Real Sites
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020.
"Heating with wind: Economics of heat pumps and variable renewables,"
Energy Economics, Elsevier, vol. 92(C).
- Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," EconStor Preprints 206688, ZBW - Leibniz Information Centre for Economics, revised 2020.
- Wirtz, Marco & Neumaier, Lisa & Remmen, Peter & Müller, Dirk, 2021. "Temperature control in 5th generation district heating and cooling networks: An MILP-based operation optimization," Applied Energy, Elsevier, vol. 288(C).
- Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
- Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2023. "Review of Hot Topics in the Sustainable Development of Energy, Water, and Environment Systems Conference in 2022," Energies, MDPI, vol. 16(23), pages 1-20, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
- Buonomano, A. & Forzano, C. & Mongibello, L. & Palombo, A. & Russo, G., 2024. "Optimising low-temperature district heating networks: A simulation-based approach with experimental verification," Energy, Elsevier, vol. 304(C).
- Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
- Quirosa, Gonzalo & Torres, Miguel & Chacartegui, Ricardo, 2022. "Analysis of the integration of photovoltaic excess into a 5th generation district heating and cooling system for network energy storage," Energy, Elsevier, vol. 239(PC).
- Sommer, Tobias & Sotnikov, Artem & Sulzer, Matthias & Scholz, Volkher & Mischler, Stefan & Rismanchi, Behzad & Gjoka, Kristian & Mennel, Stefan, 2022. "Hydrothermal challenges in low-temperature networks with distributed heat pumps," Energy, Elsevier, vol. 257(C).
- Fiorentini, Massimo & Heer, Philipp & Baldini, Luca, 2023. "Design optimization of a district heating and cooling system with a borehole seasonal thermal energy storage," Energy, Elsevier, vol. 262(PB).
- Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
- Maccarini, Alessandro & Sotnikov, Artem & Sommer, Tobias & Wetter, Michael & Sulzer, Matthias & Afshari, Alireza, 2023. "Influence of building heat distribution temperatures on the energy performance and sizing of 5th generation district heating and cooling networks," Energy, Elsevier, vol. 275(C).
- Quirosa, Gonzalo & Torres, Miguel & Becerra, José A. & Jiménez-Espadafor, Francisco J. & Chacartegui, Ricardo, 2023. "Energy analysis of an ultra-low temperature district heating and cooling system with coaxial borehole heat exchangers," Energy, Elsevier, vol. 278(PA).
- Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2024. "Fifth-generation district heating and cooling: Opportunities and implementation challenges in a mild climate," Energy, Elsevier, vol. 286(C).
- Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
- Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
- Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
- Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022.
"The case of 100% electrification of domestic heat in Great Britain,"
Working Papers
EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
- Grzegorz Kinelski & Jakub Stęchły & Piotr Bartkowiak, 2022. "Various Facets of Sustainable Smart City Management: Selected Examples from Polish Metropolitan Areas," Energies, MDPI, vol. 15(9), pages 1-23, April.
- Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
- Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
- Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
- Selva Calixto & Marco Cozzini & Giampaolo Manzolini, 2021. "Modelling of an Existing Neutral Temperature District Heating Network: Detailed and Approximate Approaches," Energies, MDPI, vol. 14(2), pages 1-16, January.
- Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
More about this item
Keywords
district heating; renewable energy sources; mixed-integer linear problem; optimization; unit commitment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2120-:d:1076598. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.