IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2054-d1074021.html
   My bibliography  Save this article

Non-Hardware-Based Non-Technical Losses Detection Methods: A Review

Author

Listed:
  • Fernando G. K. Guarda

    (Santa Maria Technical and Industrial School, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Bruno K. Hammerschmitt

    (Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Marcelo B. Capeletti

    (Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Nelson K. Neto

    (Academic Coordination, Federal University of Santa Maria, Cachoeira do Sul 96503-205, Brazil)

  • Laura L. C. dos Santos

    (Academic Coordination, Federal University of Santa Maria, Cachoeira do Sul 96503-205, Brazil)

  • Lucio R. Prade

    (Polytechnic School, University of Vale dos Sinos, São Leopoldo 93022-750, Brazil)

  • Alzenira Abaide

    (Santa Maria Technical and Industrial School, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

Abstract

Non-Technical Losses (NTL) represent a serious concern for electric companies. These losses are responsible for revenue losses, as well as reduced system reliability. Part of the revenue loss is charged to legal consumers, thus, causing social imbalance. NTL methods have been developed in order to reduce the impact in physical distribution systems and legal consumers. These methods can be classified as hardware-based and non-hardware-based. Hardware-based methods need an entirely new system infrastructure to be implemented, resulting in high investment and increased cost for energy companies, thus hampering implementation in poorer nations. With this in mind, this paper performs a review of non-hardware-based NTL detection methods. These methods use distribution systems and consumers’ data to detect abnormal energy consumption. They can be classified as network-based, which use network technical parameters to search for energy losses, data-based methods, which use data science and machine learning, and hybrid methods, which combine both. This paper focuses on reviewing non-hardware-based NTL detection methods, presenting a NTL detection methods overview and a literature search and analysis.

Suggested Citation

  • Fernando G. K. Guarda & Bruno K. Hammerschmitt & Marcelo B. Capeletti & Nelson K. Neto & Laura L. C. dos Santos & Lucio R. Prade & Alzenira Abaide, 2023. "Non-Hardware-Based Non-Technical Losses Detection Methods: A Review," Energies, MDPI, vol. 16(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2054-:d:1074021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yurtseven, Çağlar, 2015. "The causes of electricity theft: An econometric analysis of the case of Turkey," Utilities Policy, Elsevier, vol. 37(C), pages 70-78.
    2. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    3. Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Renato Grethe Negri & Fernando Guilherme Kaehler Guarda & Lucio Rene Prade & Nelson Knak Neto & Alzenira da Rosa Abaide, 2022. "Identification of Nontechnical Losses in Distribution Systems Adding Exogenous Data and Artificial Intelligence," Energies, MDPI, vol. 15(23), pages 1-23, November.
    2. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    3. Bishnu Nepal & Motoi Yamaha & Hiroya Sahashi & Aya Yokoe, 2019. "Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters," Energies, MDPI, vol. 12(12), pages 1-17, June.
    4. Yu Cui & Zishang Zhu & Xudong Zhao & Zhaomeng Li, 2023. "Energy Schedule Setting Based on Clustering Algorithm and Pattern Recognition for Non-Residential Buildings Electricity Energy Consumption," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    5. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    6. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    7. Jamil, Faisal & Ahmad, Eatzaz, 2019. "Policy considerations for limiting electricity theft in the developing countries," Energy Policy, Elsevier, vol. 129(C), pages 452-458.
    8. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    9. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    10. Daniel Leite & José Pessanha & Paulo Simões & Rodrigo Calili & Reinaldo Souza, 2020. "A Stochastic Frontier Model for Definition of Non-Technical Loss Targets," Energies, MDPI, vol. 13(12), pages 1-20, June.
    11. Martin Besfamille & Nicolás Figueroa & León Guzmán, 2023. "Ramsey pricing revisited: Natural monopoly regulation with evaders," Documentos de Trabajo 576, Instituto de Economia. Pontificia Universidad Católica de Chile..
    12. Dongjun Kim & Jinsung Yun & Kijung Kim & Seungil Lee, 2021. "A Comparative Study of the Robustness and Resilience of Retail Areas in Seoul, Korea before and after the COVID-19 Outbreak, Using Big Data," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    13. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    14. Konstantinos Makris & Ilia Vonta & Alex Karagrigoriou, 2021. "On Similarity Measures for Stochastic and Statistical Modeling," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
    15. KOMATSU Sho & MA Xinxin & SUZUKI Aya, 2022. "Influence of E-commerce on Birth Rate: Evidence from rural China based on county-level longitudinal data," Discussion papers 22101, Research Institute of Economy, Trade and Industry (RIETI).
    16. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    17. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    18. Li, Kehua & Yang, Rebecca Jing & Robinson, Duane & Ma, Jun & Ma, Zhenjun, 2019. "An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library b," Energy, Elsevier, vol. 174(C), pages 735-748.
    19. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    20. Viegas, Joaquim L. & Esteves, Paulo R. & Melício, R. & Mendes, V.M.F. & Vieira, Susana M., 2017. "Solutions for detection of non-technical losses in the electricity grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1256-1268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2054-:d:1074021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.