IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v46y2024ics1874548224000350.html
   My bibliography  Save this article

Securing the green grid: A data anomaly detection method for mitigating cyberattacks on smart meter measurements

Author

Listed:
  • Farooq, Asma
  • Shahid, Kamal
  • Olsen, Rasmus Løvenstein

Abstract

Smart meters, being a vital component in the advanced metering infrastructure (AMI), provide an opportunity to remotely monitor and control power usage and act like a bridge between customers and utilities. The installation of millions of smart meters in the power grid is a step forward towards a green transition. However, it also constitutes a massive cybersecurity vulnerability. Cyberattacks on AMI can result in inaccurate billing, energy theft, service disruptions, privacy breaches, network vulnerabilities, and malware distribution. Thus, utility companies should implement robust cyber-security measures to mitigate such risks. In order to assess the impact of cybersecurity breaches on AMI, this paper presents a cyber-attack scenario on grid measurements obtained via smart meters and assesses the stochastic grid estimations under attack. This paper also presents an efficient method for the detection and identification of anomalous data within the power grid by leveraging the distance between measurements and the confidence ellipse centered around the estimated value. To assess the proposed method, a comparative analysis is done against the chi-square test for detection and the largest normalized distribution test for the identification of bad data. Furthermore, by using a Danish low-voltage grid as a base case, this paper introduces two test cases to evaluate the performance of the proposed method under single and multiple-node cyber-attacks on the grid state estimation. Results show a notable improvement in accuracy when using the proposed method. Additionally, based on these numerical results, protective countermeasures are presented for the grid.

Suggested Citation

  • Farooq, Asma & Shahid, Kamal & Olsen, Rasmus Løvenstein, 2024. "Securing the green grid: A data anomaly detection method for mitigating cyberattacks on smart meter measurements," International Journal of Critical Infrastructure Protection, Elsevier, vol. 46(C).
  • Handle: RePEc:eee:ijocip:v:46:y:2024:i:c:s1874548224000350
    DOI: 10.1016/j.ijcip.2024.100694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548224000350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2024.100694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernando G. K. Guarda & Bruno K. Hammerschmitt & Marcelo B. Capeletti & Nelson K. Neto & Laura L. C. dos Santos & Lucio R. Prade & Alzenira Abaide, 2023. "Non-Hardware-Based Non-Technical Losses Detection Methods: A Review," Energies, MDPI, vol. 16(4), pages 1-27, February.
    2. Huilian Liao, 2019. "Review on Distribution Network Optimization under Uncertainty," Energies, MDPI, vol. 12(17), pages 1-21, September.
    3. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwu Yan & Yan Guo & Jiaoxin Jia & Waseem Aslam & Bingbao Qi & Yang Wang & Xiaolin Xu, 2022. "An Electromagnetic Var Compensator Suitable for Wind Power Access and Its Control Strategy," Energies, MDPI, vol. 15(15), pages 1-15, July.
    2. Yang, Kaixiang & Chen, Wuxing & Bi, Jichao & Wang, Mengzhi & Luo, Fengji, 2023. "Multi-view broad learning system for electricity theft detection," Applied Energy, Elsevier, vol. 352(C).
    3. Nsabimana, René & Perelman, Sergio & Walheer, Barnabé & Mapapa, Mbangala, 2024. "Effectiveness and efficiency in access to reliable electricity: The case of East African countries," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    4. Peng Jiang & Xihao Dou & Jun Dong & Hexiang Huang & Yuanyuan Wang, 2022. "Terminal Node of Active Distribution Network Correlation Compactness Model and Application Based on Complex Network Topology Graph," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    5. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Tao Zhang & Minli Wang & Peihong Wang & Junyu Liang, 2020. "Optimal Design of a Combined Cooling, Heating, and Power System and Its Ability to Adapt to Uncertainty," Energies, MDPI, vol. 13(14), pages 1-17, July.
    7. Marie-Cécile Alvarez-Herault & Jean-Pierre Dib & Oana Ionescu & Bertrand Raison, 2022. "Long-Term Planning of Electrical Distribution Grids: How Load Uncertainty and Flexibility Affect the Investment Timing," Energies, MDPI, vol. 15(16), pages 1-27, August.
    8. Klug, Thomas W. & Beyene, Abebe D. & Meles, Tensay H. & Toman, Michael A. & Hassen, Sied & Hou, Michael & Klooss, Benjamin & Mekonnen, Alemu & Jeuland, Marc, 2022. "A review of impacts of electricity tariff reform in Africa," Energy Policy, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:46:y:2024:i:c:s1874548224000350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.