IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1804-d1065845.html
   My bibliography  Save this article

CO 2 Compression and Dehydration for Transport and Geological Storage

Author

Listed:
  • Paweł Bielka

    (Independent Researcher, 47-330 Zdzieszowice, Poland)

  • Szymon Kuczyński

    (Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland)

  • Stanisław Nagy

    (Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland)

Abstract

Observation of the greenhouse effect prompts the consideration of every possibility of reducing anthropogenic carbon dioxide emissions. One of the key methods that has been the subject of much research is Carbon Dioxide Capture and Storage. The purpose of this study was to investigate the main technologies of CO 2 capture, separation, and dehydration as well as methods of its transport and methodology of selecting a suitable geological storage site. An installation of dehydration and compression of carbon dioxide captured after the post-combustion was designed at a temperature of 35 °C, a pressure of 1.51 bar, and a mass flow rate of 2.449 million tons/year, assuming that the geological storage site is located at 30 km from the capture place. For the dehydration process, a multistage compression and cooling system were applied, combined with a triethylene glycol (TEG) dehydration unit. The mass flow rate of TEG was selected as 0.5 kg/s. H 2 O out of the TEG unit was 26.6 ppm. The amount of energy required to compress the gas was minimized by adopting a maximum post-compression gas temperature of 95 °C for each cycle, thereby reducing plant operating costs. The total power demand was 7047 kW, 15,990 kW, and 24,471 kW, and the total received heat input was 13,880.76 kW, 31,620.07 kW, and 47,035.66 kW for 25%, 60%, and 100% plant load, respectively. The use of more compressors reduces the gas temperature downstream through successive compression stages. It also decreases the total amount of energy required to power the entire plant and the amount of heat that must be collected during the gas stream cooling process. The integration of CO 2 compression and cooling system to recover heat and increase the efficiency of power units should be considered.

Suggested Citation

  • Paweł Bielka & Szymon Kuczyński & Stanisław Nagy, 2023. "CO 2 Compression and Dehydration for Transport and Geological Storage," Energies, MDPI, vol. 16(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1804-:d:1065845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lebunu Hewage Udara Willhelm Abeydeera & Jayantha Wadu Mesthrige & Tharushi Imalka Samarasinghalage, 2019. "Global Research on Carbon Emissions: A Scientometric Review," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    2. Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    2. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    3. Mounir Dahmani & Mohamed Mabrouki & Ludovic Ragni, 2021. "Decoupling Analysis of Greenhouse Gas Emissions from Economic Growth: A Case Study of Tunisia," Energies, MDPI, vol. 14(22), pages 1-15, November.
    4. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    5. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    7. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Ruiz-Aguirre, A. & Villachica-Llamosas, J.G. & Polo-López, M.I. & Cabrera-Reina, A. & Colón, G. & Peral, J. & Malato, S., 2022. "Assessment of pilot-plant scale solar photocatalytic hydrogen generation with multiple approaches: Valorization, water decontamination and disinfection," Energy, Elsevier, vol. 260(C).
    10. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    11. Muhammad Imran & Azlan Zahid & Salma Mouneer & Orhan Özçatalbaş & Shamsheer Ul Haq & Pomi Shahbaz & Muhammad Muzammil & Muhammad Ramiz Murtaza, 2022. "Relationship between Household Dynamics, Biomass Consumption, and Carbon Emissions in Pakistan," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    12. Rizwana Yasmeen & Wasi Ul Hassan Shah & Larisa Ivascu & Rui Tao & Muddassar Sarfraz, 2022. "Energy Crisis, Firm Productivity, Political Crisis, and Sustainable Growth of the Textile Industry: An Emerging Economy Perspective," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    13. Shamsuzzaman, Mohammad & Shamsuzzoha, Ahm & Maged, Ahmed & Haridy, Salah & Bashir, Hamdi & Karim, Azharul, 2021. "Effective monitoring of carbon emissions from industrial sector using statistical process control," Applied Energy, Elsevier, vol. 300(C).
    14. Swagatika Biswal & Sudhansu Ranjan Das & Nutan Saha & Prakash Chandra Mishra, 2024. "Environmental sustainability assessment of gasoline and methanol blended smart fuel for reduced emission formation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26753-26784, October.
    15. Aiman Albatayneh & Adel Juaidi & Mustafa Jaradat & Francisco Manzano-Agugliaro, 2023. "Future of Electric and Hydrogen Cars and Trucks: An Overview," Energies, MDPI, vol. 16(7), pages 1-16, April.
    16. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    17. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    18. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    19. Wu, Zhihong & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Numerical investigation of methane steam reforming in packed bed reactor with internal helical heat fins," Energy, Elsevier, vol. 278(PB).
    20. Yi Le & Sheng-Yang Huang, 2023. "Prediction of Urban Trees Planting Base on Guided Cellular Automata to Enhance the Connection of Green Infrastructure," Land, MDPI, vol. 12(8), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1804-:d:1065845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.