IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp199-208.html
   My bibliography  Save this article

A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction

Author

Listed:
  • Li, Wenlong
  • Chau, K.T.
  • Lee, Christopher H.T.
  • Ching, T.W.
  • Chen, Mu
  • Jiang, J.Z.

Abstract

In this paper, a new linear magnetic gear with multiple gear ratios is proposed. Unlike the conventional linear magnetic gears, the proposed one purposely utilizes the aluminum-nickel-cobalt (AlNiCo) permanent magnets (PMs) as the excitation source. Due to the relatively low coercivity, AlNiCo PMs can be magnetized or demagnetized by applying an appropriate DC current pulse into the magnetizing winding. Thus, the pole-pair numbers of PMs on two movers can be varied accordingly so that different gear ratios can be achieved. Firstly, the mathematical modeling of the hysteresis loop of AlNiCo PMs is established. Then, the proposed linear magnetic gear with adjustable gear ratios is presented. Instead of the traditional surface-mounted PM configuration, the proposed machine installs the PMs using the surface-inset and consequent-pole configuration. Hence, the adverse influence during the magnetizing or demagnetizing process can be minimized. Since the magnetizing windings are placed in the movers, no position control is required for the magnetizing or demagnetizing process. By applying finite element analysis, the electromagnetic performances of the proposed linear magnetic gear with adjustable gear ratios are evaluated. Finally, the proposed linear magnetic gear is applied for direct-drive wave energy extraction. Owing to the capability of adjustable gear ratios, the wave energy converter can be operated in resonance with the waves at different sea states so that the maximized power can be captured.

Suggested Citation

  • Li, Wenlong & Chau, K.T. & Lee, Christopher H.T. & Ching, T.W. & Chen, Mu & Jiang, J.Z., 2017. "A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction," Renewable Energy, Elsevier, vol. 105(C), pages 199-208.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:199-208
    DOI: 10.1016/j.renene.2016.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part II: Development of latching control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 935-944.
    2. Truong, Dinh Quang & Ahn, Kyoung Kwan, 2014. "Development of a novel point absorber in heave for wave energy conversion," Renewable Energy, Elsevier, vol. 65(C), pages 183-191.
    3. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part I: Optimal and control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 922-934.
    4. de Andres, A. & Guanche, R. & Vidal, C. & Losada, I.J., 2015. "Adaptability of a generic wave energy converter to different climate conditions," Renewable Energy, Elsevier, vol. 78(C), pages 322-333.
    5. Hall, John F. & Mecklenborg, Christine A. & Chen, Dongmei & Pratap, Siddharth B., 2011. "Wind energy conversion with a variable-ratio gearbox: design and analysis," Renewable Energy, Elsevier, vol. 36(3), pages 1075-1080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    2. Mauro Andriollo & Simone Bernasconi & Andrea Tortella, 2021. "Design Issues of a Rotating to Linear Motion Magnetic Converter for Short-Distance Transport Applications," Energies, MDPI, vol. 14(24), pages 1-17, December.
    3. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    4. Gerardo Ruiz-Ponce & Marco A. Arjona & Concepcion Hernandez & Rafael Escarela-Perez, 2023. "A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission," Energies, MDPI, vol. 16(4), pages 1-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    2. Tri, Nguyen Minh & Truong, Dinh Quang & Thinh, Do Hoang & Binh, Phan Cong & Dung, Dang Tri & Lee, Seyoung & Park, Hyung Gyu & Ahn, Kyoung Kwan, 2016. "A novel control method to maximize the energy-harvesting capability of an adjustable slope angle wave energy converter," Renewable Energy, Elsevier, vol. 97(C), pages 518-531.
    3. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    4. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    5. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    6. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    7. Liguo Wang & Jan Isberg, 2015. "Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves," Energies, MDPI, vol. 8(7), pages 1-15, June.
    8. Haraguchi, Ruriko & Asai, Takehiko, 2020. "Enhanced power absorption of a point absorber wave energy converter using a tuned inertial mass," Energy, Elsevier, vol. 202(C).
    9. Zhang, Zhenquan & Qin, Jian & Wang, Dengshuai & Wang, Wei & Liu, Yanjun & Xue, Gang, 2023. "Research on wave excitation estimators for arrays of wave energy converters," Energy, Elsevier, vol. 264(C).
    10. Faÿ, François-Xavier & Henriques, João C. & Kelly, James & Mueller, Markus & Abusara, Moahammad & Sheng, Wanan & Marcos, Marga, 2020. "Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant," Renewable Energy, Elsevier, vol. 146(C), pages 2766-2784.
    11. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    12. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Temiz, Irina & Leijon, Jennifer & Ekergård, Boel & Boström, Cecilia, 2018. "Economic aspects of latching control for a wave energy converter with a direct drive linear generator power take-off," Renewable Energy, Elsevier, vol. 128(PA), pages 57-67.
    14. Haeng Sik Ko & Sangho Kim & Yoon Hyeok Bae, 2021. "Study on Optimum Power Take-Off Torque of an Asymmetric Wave Energy Converter in Western Sea of Jeju Island," Energies, MDPI, vol. 14(5), pages 1-12, March.
    15. Sheng, Wanan, 2019. "Wave energy conversion and hydrodynamics modelling technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 482-498.
    16. Shadman, Milad & Guarniz Avalos, Gustavo Omar & Estefen, Segen F., 2021. "On the power performance of a wave energy converter with a direct mechanical drive power take-off system controlled by latching," Renewable Energy, Elsevier, vol. 169(C), pages 157-177.
    17. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    18. He, Zechen & Ning, Dezhi & Gou, Ying & Zhou, Zhimin, 2022. "Wave energy converter optimization based on differential evolution algorithm," Energy, Elsevier, vol. 246(C).
    19. Wang, Mangkuan & Shang, Jianzhong & Luo, Zirong & Lu, Zhongyue & Yao, Ganzhou, 2023. "Theoretical and numerical studies on improving absorption power of multi-body wave energy convert device with nonlinear bistable structure," Energy, Elsevier, vol. 282(C).
    20. Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:199-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.