IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1712-d1062400.html
   My bibliography  Save this article

Forecasting Electricity Demand by Neural Networks and Definition of Inputs by Multi-Criteria Analysis

Author

Listed:
  • Carolina Deina

    (Graduate Program in Industrial Engineering (PPGEP), Federal University of Rio Grande do Sul (UFRGS), Av. Paulo Gama, 110, Porto Alegre 90040-060, Brazil)

  • João Lucas Ferreira dos Santos

    (Graduate Program in Industrial Engineering (PPGEP), Federal University of Technology-Parana (UTFPR), Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil)

  • Lucas Henrique Biuk

    (Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology-Parana (UTFPR), Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil)

  • Mauro Lizot

    (Department of General and Applied Administration (DAGA), Federal University of Parana (UFPR), Avenue Prefeito Lothário Meissner, 632, Jardim Botânico 80210-170, Brazil)

  • Attilio Converti

    (Department of Civil, Chemical and Environmental Engineering, University of Genoa, Pole of Chemical Engineering, Via Opera Pia 15, 15145 Genoa, Italy)

  • Hugo Valadares Siqueira

    (Graduate Program in Industrial Engineering (PPGEP), Federal University of Technology-Parana (UTFPR), Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil
    Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology-Parana (UTFPR), Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil)

  • Flavio Trojan

    (Graduate Program in Industrial Engineering (PPGEP), Federal University of Technology-Parana (UTFPR), Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil)

Abstract

The planning of efficient policies based on forecasting electricity demand is essential to guarantee the continuity of energy supply for consumers. Some techniques for forecasting electricity demand have used specific procedures to define input variables, which can be particular to each case study. However, the definition of independent and casual variables is still an issue to be explored. There is a lack of models that could help the selection of independent variables, based on correlate criteria and level of importance integrated with artificial networks, which could directly impact the forecasting quality. This work presents a model that integrates a multi-criteria approach which provides the selection of relevant independent variables and artificial neural networks to forecast the electricity demand in countries. It provides to consider the particularities of each application. To demonstrate the applicability of the model a time series of electricity consumption from a southern region of Brazil was used. The dependent inputs used by the neural networks were selected using a traditional method called Wrapper. As a result of this application, with the multi-criteria ELECTRE I method was possible to recognize temperature and average evaporation as explanatory variables. When the variables selected by the multi-criteria approach were included in the predictive models, were observed more consistent results together with artificial neural networks, better than the traditional linear models. The Radial Basis Function Networks and Extreme Learning Machines stood out as potential techniques to be used integrated with a multi-criteria method to better perform the forecasting.

Suggested Citation

  • Carolina Deina & João Lucas Ferreira dos Santos & Lucas Henrique Biuk & Mauro Lizot & Attilio Converti & Hugo Valadares Siqueira & Flavio Trojan, 2023. "Forecasting Electricity Demand by Neural Networks and Definition of Inputs by Multi-Criteria Analysis," Energies, MDPI, vol. 16(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1712-:d:1062400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Badurally Adam, N.R. & Elahee, M.K. & Dauhoo, M.Z., 2011. "Forecasting of peak electricity demand in Mauritius using the non-homogeneous Gompertz diffusion process," Energy, Elsevier, vol. 36(12), pages 6763-6769.
    2. Pao, Hsiao-Tien, 2006. "Comparing linear and nonlinear forecasts for Taiwan's electricity consumption," Energy, Elsevier, vol. 31(12), pages 2129-2141.
    3. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    4. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    5. Torrini, Fabiano Castro & Souza, Reinaldo Castro & Cyrino Oliveira, Fernando Luiz & Moreira Pessanha, Jose Francisco, 2016. "Long term electricity consumption forecast in Brazil: A fuzzy logic approach," Socio-Economic Planning Sciences, Elsevier, vol. 54(C), pages 18-27.
    6. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Lorena Calavia & Belén Carro & Antonio Sánchez-Esguevillas & Pablo García & Jaime Lloret, 2013. "Experimental Analysis of the Input Variables’ Relevance to Forecast Next Day’s Aggregated Electric Demand Using Neural Networks," Energies, MDPI, vol. 6(6), pages 1-22, June.
    7. Jingmin Wang & Jian Zhang & Jing Nie, 2016. "An Improved Artificial Colony Algorithm Model for Forecasting Chinese Electricity Consumption and Analyzing Effect Mechanism," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-14, August.
    8. Mohammed, Nooriya A., 2018. "Modelling of unsuppressed electrical demand forecasting in Iraq for long term," Energy, Elsevier, vol. 162(C), pages 354-363.
    9. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    10. Herui Cui & Xu Peng, 2015. "Short-Term City Electric Load Forecasting with Considering Temperature Effects: An Improved ARIMAX Model," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, July.
    11. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    12. Tutun, Salih & Chou, Chun-An & Canıyılmaz, Erdal, 2015. "A new forecasting framework for volatile behavior in net electricity consumption: A case study in Turkey," Energy, Elsevier, vol. 93(P2), pages 2406-2422.
    13. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    2. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    3. Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
    4. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    5. Marwen Elkamel & Lily Schleider & Eduardo L. Pasiliao & Ali Diabat & Qipeng P. Zheng, 2020. "Long-Term Electricity Demand Prediction via Socioeconomic Factors—A Machine Learning Approach with Florida as a Case Study," Energies, MDPI, vol. 13(15), pages 1-21, August.
    6. Akdi, Yılmaz & Gölveren, Elif & Okkaoğlu, Yasin, 2020. "Daily electrical energy consumption: Periodicity, harmonic regression method and forecasting," Energy, Elsevier, vol. 191(C).
    7. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    8. Gulay, Emrah & Duru, Okan, 2020. "Hybrid modeling in the predictive analytics of energy systems and prices," Applied Energy, Elsevier, vol. 268(C).
    9. Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
    10. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    11. Fisher-Vanden, Karen & Mansur, Erin T. & Wang, Qiong (Juliana), 2015. "Electricity shortages and firm productivity: Evidence from China's industrial firms," Journal of Development Economics, Elsevier, vol. 114(C), pages 172-188.
    12. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    14. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    15. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    16. Nikos Sakkas & Sofia Yfanti & Pooja Shah & Nikitas Sakkas & Christina Chaniotakis & Costas Daskalakis & Eduard Barbu & Marharyta Domnich, 2023. "Explainable Approaches for Forecasting Building Electricity Consumption," Energies, MDPI, vol. 16(20), pages 1-20, October.
    17. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    18. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    19. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    20. Yukseltan, E. & Kok, A. & Yucekaya, A. & Bilge, A. & Aktunc, E. Agca & Hekimoglu, M., 2022. "The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey," Utilities Policy, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1712-:d:1062400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.