IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1586-d1058211.html
   My bibliography  Save this article

Perovskite Tandem Solar Cell Technologies

Author

Listed:
  • Jianqin Li

    (Sichuan Industrial Metrology and Testing Institute, Chengdu 610100, China)

  • Feng Wen

    (Special Glass Key Laboratory of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China)

  • Shenghao Wang

    (Materials Gerome Institute, Shanghai University, Shanghai 200444, China)

Abstract

With the increasing population worldwide, the consumption of fossil energy is grows to be enormous [...]

Suggested Citation

  • Jianqin Li & Feng Wen & Shenghao Wang, 2023. "Perovskite Tandem Solar Cell Technologies," Energies, MDPI, vol. 16(4), pages 1-3, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1586-:d:1058211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia V. Mercaldo & Eugenia Bobeico & Antonella De Maria & Marco Della Noce & Manuela Ferrara & Vera La Ferrara & Laura Lancellotti & Gabriella Rametta & Gennaro V. Sannino & Iurie Usatii & Paola Dell, 2021. "Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells with Nanocrystalline Si/SiO x Tunnel Junction," Energies, MDPI, vol. 14(22), pages 1-13, November.
    2. Jiyeon Hyun & Kyung Mun Yeom & Ha Eun Lee & Donghwan Kim & Hae-Seok Lee & Jun Hong Noh & Yoonmook Kang, 2021. "Efficient n-i-p Monolithic Perovskite/Silicon Tandem Solar Cells with Tin Oxide via a Chemical Bath Deposition Method," Energies, MDPI, vol. 14(22), pages 1-10, November.
    3. Mostafa M. Salah & Abdelhalim Zekry & Ahmed Shaker & Mohamed Abouelatta & Mohamed Mousa & Ahmed Saeed, 2022. "Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell," Energies, MDPI, vol. 15(17), pages 1-16, August.
    4. Grażyna Kulesza-Matlak & Kazimierz Drabczyk & Anna Sypień & Agnieszka Pająk & Łukasz Major & Marek Lipiński, 2021. "Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell," Energies, MDPI, vol. 14(20), pages 1-15, October.
    5. Hoyoung Song & Changhyun Lee & Jiyeon Hyun & Sang-Won Lee & Dongjin Choi & Dowon Pyun & Jiyeon Nam & Seok-Hyun Jeong & Jiryang Kim & Soohyun Bae & Hyunju Lee & Yoonmook Kang & Donghwan Kim & Hae-Seok , 2021. "Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer," Energies, MDPI, vol. 14(11), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui-Yun Hsu & Yeong-Lin Lai & Yung-Hua Chou & Wei-Jhe Syu, 2024. "Improving Carrier Transport Behavior in a Bilayer ETL for Enhanced Efficiency of Perovskite Solar Cells: An Investigation," Energies, MDPI, vol. 17(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. Morsy & Khalid Saleh, 2023. "Graded-Index Active Layer for Efficiency Enhancement in Polymer Solar Cell," Energies, MDPI, vol. 16(9), pages 1-14, May.
    2. Changhyun Lee & Jiyeon Hyun & Jiyeon Nam & Seok-Hyun Jeong & Hoyoung Song & Soohyun Bae & Hyunju Lee & Jaeseung Seol & Donghwan Kim & Yoonmook Kang & Hae-Seok Lee, 2021. "Amorphous Silicon Thin Film Deposition for Poly-Si/SiO 2 Contact Cells to Minimize Parasitic Absorption in the Near-Infrared Region," Energies, MDPI, vol. 14(24), pages 1-9, December.
    3. Arnob Das & Susmita Datta Peu & Md Abdul Mannan Akanda & Mostafa M. Salah & Md. Sejan Hossain & Barun Kumar Das, 2023. "Numerical Simulation and Optimization of Inorganic Lead-Free Cs 3 Bi 2 I 9 -Based Perovskite Photovoltaic Cell: Impact of Various Design Parameters," Energies, MDPI, vol. 16(5), pages 1-20, February.
    4. Ahmed Saeed & Mostafa M. Salah & Abdelhalim Zekry & Mohamed Mousa & Ahmed Shaker & Mohamed Abouelatta & Fathy Z. Amer & Roaa I. Mubarak & Dalia S. Louis, 2023. "Investigation of High-Efficiency and Stable Carbon-Perovskite/Silicon and Carbon-Perovskite/CIGS-GeTe Tandem Solar Cells," Energies, MDPI, vol. 16(4), pages 1-14, February.
    5. Nour El Islam Boukortt & Claudia Triolo & Saveria Santangelo & Salvatore Patanè, 2023. "All-Perovskite Tandem Solar Cells: From Certified 25% and Beyond," Energies, MDPI, vol. 16(8), pages 1-24, April.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1586-:d:1058211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.