IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1824-d523764.html
   My bibliography  Save this article

One-Cycle Fourier Finite Position Set PLL

Author

Listed:
  • Fernando Lino

    (Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo André 09210-180, Brazil
    These authors contributed equally to this work.)

  • Jefferson Assis

    (Department of Electrical Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil
    These authors contributed equally to this work.)

  • Darlan A. Fernandes

    (Department of Electrical Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil
    These authors contributed equally to this work.)

  • Rogerio Jacomini

    (Instituto Federal de São Paulo, Hortolândia 13183-250, Brazil
    These authors contributed equally to this work.)

  • Fabiano F. Costa

    (Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
    These authors contributed equally to this work.)

  • Alfeu J. Sguarezi Filho

    (Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo André 09210-180, Brazil
    These authors contributed equally to this work.)

Abstract

This work introduces a new method for computing the angular position of the voltage of the grid—based on a finite set of angles—in the condition of failures in the distribution systems, as symmetrical and asymmetric voltage sags, unbalance, harmonic distortions, and frequency changes. This method is inspired in the model predictive control finite control set principles. In this way, the proposal employs the One-Cycle Fourier filter (OCF) to estimate the positive sequence of the voltage vector into the stationary α β -frame. The positive sequence voltages extracted from this filter is then handled by an algorithm that is implemented by a finite position set (FPS) for estimating the phase angle. In this way, the minimized cost function chooses the optimal angular position while using the predicted behavior of the grid voltage vector elements in d q frame. The structure, called One-Cycle Fourier Finite position Set Phase Locked Loop (OCF-FS-PLL), here is a composition of the OCF and the FPS. The results that were obtained in an experimental test bench validate the proposed method.

Suggested Citation

  • Fernando Lino & Jefferson Assis & Darlan A. Fernandes & Rogerio Jacomini & Fabiano F. Costa & Alfeu J. Sguarezi Filho, 2021. "One-Cycle Fourier Finite Position Set PLL," Energies, MDPI, vol. 14(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1824-:d:523764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Abdelrahem & Ralph Kennel, 2016. "Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quan Zhou & Taotao Xiong & Mubin Wang & Chenmeng Xiang & Qingpeng Xu, 2017. "Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and Modified ANFIS," Energies, MDPI, vol. 10(7), pages 1-15, July.
    2. Xiangwu Yan & Linlin Yang & Tiecheng Li, 2021. "The LVRT Control Scheme for PMSG-Based Wind Turbine Generator Based on the Coordinated Control of Rotor Overspeed and Supercapacitor Energy Storage," Energies, MDPI, vol. 14(2), pages 1-22, January.
    3. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
    4. Muhammad Zubair Asif Bhatti & Abubakar Siddique & Waseem Aslam & Shahid Atiq & Hussain Sarwar Khan, 2023. "Improved Model Predictive Direct Power Control for Parallel Distributed Generation in Grid-Tied Microgrids," Energies, MDPI, vol. 16(3), pages 1-22, February.
    5. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    6. Mostafa Ahmed & Mohamed Abdelrahem & Ralph Kennel, 2020. "Highly Efficient and Robust Grid Connected Photovoltaic System Based Model Predictive Control with Kalman Filtering Capability," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    7. Mohamed Abdelrahem & José Rodríguez & Ralph Kennel, 2020. "Improved Direct Model Predictive Control for Grid-Connected Power Converters," Energies, MDPI, vol. 13(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1824-:d:523764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.