IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1400-d1052391.html
   My bibliography  Save this article

Pore-Scale Investigation of Low-Salinity Nanofluids on Wetting Properties of Oil Carbonate Reservoir Rocks Studied by X-ray Micro-Tomography

Author

Listed:
  • Anastasia Ivanova

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia)

  • Azhar Kuandykova

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia)

  • Alexander Rodionov

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia)

  • Andrey Morkovkin

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia)

  • Alexander Burukhin

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia)

  • Alexey Cheremisin

    (Skolkovo Institute of Science and Technology, 121205 Moscow, Russia)

Abstract

Low-salinity surfactant nanofluids have recently shown promising results in the wettability alteration of reservoir rocks from oil-wet state towards more water-wet state. However, the investigation of pore-level interactions of nanofluids injection in real oil carbonate rocks at reservoir conditions, which determines the overall fluid dynamics, is lacking. Therefore, in this work, we studied the effect of nanoparticles augmented low-salinity surfactant flooding on the wettability alteration of hydrophobic carbonate rocks with harsh reservoir conditions via X-ray micro-tomography. The designed experiment scheme involved core flooding with an X-ray transparent core-holder developed for studying the flow properties of fluids at the micro level (pore scale). The wettability was quantified by measuring the differences in contact angles after the injection of low salinity, low-salinity surfactant, and low-salinity surfactant nanofluid. The findings illustrate that surfactant flooding with silica nanoparticles had a more pronounced influence on the contact angle among other injected fluids. The contact angle of the rock fell from 144° to 49°, corresponding to the water-wet conditions of carbonate rocks. The results show that the addition of a low concentration (0.005 wt.%) of SiO 2 nanoparticles was enough for wettability changes in oil carbonate rocks. This study illustrates that a combination of surfactant, low-salinity, and nanoparticle features has a more pronounced effect on the three-phase contact angle than if applied separately.

Suggested Citation

  • Anastasia Ivanova & Azhar Kuandykova & Alexander Rodionov & Andrey Morkovkin & Alexander Burukhin & Alexey Cheremisin, 2023. "Pore-Scale Investigation of Low-Salinity Nanofluids on Wetting Properties of Oil Carbonate Reservoir Rocks Studied by X-ray Micro-Tomography," Energies, MDPI, vol. 16(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1400-:d:1052391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaofei Sun & Yanyu Zhang & Guangpeng Chen & Zhiyong Gai, 2017. "Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress," Energies, MDPI, vol. 10(3), pages 1-33, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tariq Ali Chandio & Muhammad A. Manan & Khalil Rehman Memon & Ghulam Abbas & Ghazanfer Raza Abbasi, 2021. "Enhanced Oil Recovery by Hydrophilic Silica Nanofluid: Experimental Evaluation of the Impact of Parameters and Mechanisms on Recovery Potential," Energies, MDPI, vol. 14(18), pages 1-19, September.
    2. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
    3. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).
    4. Liu, Yu-Long & Li, Yang & Si, Yin-Fang & Fu, Jian & Dong, Hao & Sun, Shan-Shan & Zhang, Fan & She, Yue-Hui & Zhang, Zhi-Quan, 2023. "Synthesis of nanosilver particles mediated by microbial surfactants and its enhancement of crude oil recovery," Energy, Elsevier, vol. 272(C).
    5. Zheng, Cunchuan & Liu, Fuchuan & Zhang, Tailiang & Huang, Zhiyu, 2021. "Preparation of fluoropolymer nanoparticles(FPNPs) dispersion and its application as a wetting adjustment agent for sandstone rocks," Energy, Elsevier, vol. 237(C).
    6. Oscar E. Medina & Yira Hurtado & Cristina Caro-Velez & Farid B. Cortés & Masoud Riazi & Sergio H. Lopera & Camilo A. Franco, 2019. "Improvement of Steam Injection Processes Through Nanotechnology: An Approach through in Situ Upgrading and Foam Injection," Energies, MDPI, vol. 12(24), pages 1-21, December.
    7. Fasano, Matteo & Morciano, Matteo & Bergamasco, Luca & Chiavazzo, Eliodoro & Zampato, Massimo & Carminati, Stefano & Asinari, Pietro, 2021. "Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery," Applied Energy, Elsevier, vol. 304(C).
    8. Dmitriy Podoprigora & Roman Byazrov & Julia Sytnik, 2022. "The Comprehensive Overview of Large-Volume Surfactant Slugs Injection for Enhancing Oil Recovery: Status and the Outlook," Energies, MDPI, vol. 15(21), pages 1-21, November.
    9. Md Motiur Rahman & Mohammed Haroun & Mohammed Al Kobaisi & Minkyun Kim & Abhijith Suboyin & Bharat Somra & Jassim Abubacker Ponnambathayil & Soham Punjabi, 2022. "Insights into Nanoparticles, Electrokinetics and Hybrid Techniques on Improving Oil Recovered in Carbonate Reservoirs," Energies, MDPI, vol. 15(15), pages 1-25, July.
    10. Alberto Bila & Ole Torsæter, 2020. "Enhancing Oil Recovery with Hydrophilic Polymer-Coated Silica Nanoparticles," Energies, MDPI, vol. 13(21), pages 1-15, November.
    11. Oscar E. Medina & Carol Olmos & Sergio H. Lopera & Farid B. Cortés & Camilo A. Franco, 2019. "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, MDPI, vol. 12(24), pages 1-36, December.
    12. Tola Sreu & Kyuro Sasaki & Yuichi Sugai & Ronald Nguele, 2021. "An Experimental Study of the Influence of the Preflush Salinity on Enhanced Oil Recovery Using Silica-Based Nanofluids," Energies, MDPI, vol. 14(21), pages 1-17, October.
    13. Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.
    14. Chaturvedi, Krishna Raghav & Trivedi, Japan & Sharma, Tushar, 2020. "Single-step silica nanofluid for improved carbon dioxide flow and reduced formation damage in porous media for carbon utilization," Energy, Elsevier, vol. 197(C).
    15. Hugo Alejandro García-Duarte & María Carolina Ruiz-Cañas & Romel Antonio Pérez-Romero, 2022. "Innovative Experimental Design for the Evaluation of Nanofluid-Based Solvent as a Hybrid Technology for Optimizing Cyclic Steam Stimulation Applications," Energies, MDPI, vol. 16(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1400-:d:1052391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.