IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1303-d1047276.html
   My bibliography  Save this article

Heat Transfer of Water Flow Boiling in Nanostructured Open Microchannels

Author

Listed:
  • Liaofei Yin

    (Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Zhonglin Yang

    (Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Kexin Zhang

    (Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Yingli Xue

    (Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Chao Dang

    (Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

In recent years, the open microchannel has drawn increasing interest, but severe local dryout limited the heat transfer capability of flow boiling. It was anticipated that nanostructures with exceptional capillary wicking abilities would overcome this problem. In this study, blade-like CuO nanostructures were created in the copper open microchannels to experimentally investigate water flow boiling. Experiments were carried out in nanostructured open microchannels (NMCs), and smooth-surface open microchannels (SMCs), as a comparison, were examined under identical operating conditions. Four main flow patterns, including bubbly flow, slug flow, and two kinds of stratified flow, dominated successively in NMCs and SMCs. Although the flow patterns were similar in NMCs and SMCs, the heat transfer coefficient (HTC) of flow boiling was greatly enhanced by nanostructures under conditions of medium and high heat flux, while the nanostructures’ influence on HTC was unnoticeable at low heat flux. At medium and high heat fluxes, the dependence of HTC on heat flux and flow rate indicated the joint contribution of nucleate boiling mechanism and convective evaporation mechanism to heat transfer. The enhanced effect of nanostructures on nucleate boiling and convective evaporation became more prominent as heat flux increased, leading to a higher HTC in NMCs than in SMCs at higher heat flux conditions.

Suggested Citation

  • Liaofei Yin & Zhonglin Yang & Kexin Zhang & Yingli Xue & Chao Dang, 2023. "Heat Transfer of Water Flow Boiling in Nanostructured Open Microchannels," Energies, MDPI, vol. 16(3), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1303-:d:1047276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Idris Al Siyabi & Sourav Khanna & Senthilarasu Sundaram & Tapas Mallick, 2018. "Experimental and Numerical Thermal Analysis of Multi-Layered Microchannel Heat Sink for Concentrating Photovoltaic Application," Energies, MDPI, vol. 12(1), pages 1-25, December.
    2. Ladislav Suk & Taron Petrosyan & Kamil Stevanka & Daniel Vlcek & Pavel Gejdos, 2020. "Experimental Investigation of Critical Heat Flux on Different Surfaces at Low Pressure and Low Flow," Energies, MDPI, vol. 13(19), pages 1-23, October.
    3. Magdalena Piasecka & Kinga Strąk, 2022. "Boiling Heat Transfer during Flow in Vertical Mini-Channels with a Modified Heated Surface," Energies, MDPI, vol. 15(19), pages 1-26, September.
    4. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    5. Donghui Zhang & Haiyang Xu & Yi Chen & Leiqing Wang & Jian Qu & Mingfa Wu & Zhiping Zhou, 2020. "Boiling Heat Transfer Performance of Parallel Porous Microchannels," Energies, MDPI, vol. 13(11), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    2. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    3. Bin Yang & Xin Zhu & Boan Wei & Minzhang Liu & Yifan Li & Zhihan Lv & Faming Wang, 2023. "Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review," Energies, MDPI, vol. 16(3), pages 1-24, February.
    4. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    5. Hazama, Hirofumi & Masuoka, Yumi & Suzumura, Akitoshi & Matsubara, Masato & Tajima, Shin & Asahi, Ryoji, 2018. "Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency," Applied Energy, Elsevier, vol. 226(C), pages 381-388.
    6. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    7. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Mao, Zhengsong, 2023. "Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load," Energy, Elsevier, vol. 282(C).
    8. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    9. Cózar, I.R. & Pujol, T. & Lehocky, M., 2018. "Numerical analysis of the effects of electrical and thermal configurations of thermoelectric modules in large-scale thermoelectric generators," Applied Energy, Elsevier, vol. 229(C), pages 264-280.
    10. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & González, J.R. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2018. "A method to assess the fuel economy of automotive thermoelectric generators," Applied Energy, Elsevier, vol. 222(C), pages 42-58.
    11. Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
    12. Luo, Ding & Wang, Ruochen & Yan, Yuying & Yu, Wei & Zhou, Weiqi, 2021. "Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery," Applied Energy, Elsevier, vol. 297(C).
    13. Cheng-You Chen & Kung-Wen Du & Yi-Cheng Chung & Chun-I Wu, 2024. "Advancements in Thermoelectric Generator Design: Exploring Heat Exchanger Efficiency and Material Properties," Energies, MDPI, vol. 17(2), pages 1-25, January.
    14. Ezzitouni, S. & Fernández-Yáñez, P. & Sánchez, L. & Armas, O., 2020. "Global energy balance in a diesel engine with a thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    15. Magdalena Piasecka, 2023. "Heat and Mass Transfer Issues in Mini-Gaps," Energies, MDPI, vol. 16(16), pages 1-6, August.
    16. Wenlong Yang & Wenchao Zhu & Yang Yang & Liang Huang & Ying Shi & Changjun Xie, 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods," Energies, MDPI, vol. 15(6), pages 1-21, March.
    17. Zhou, Haojie & Tian, Tong & Wang, Xinyue & Li, Ji, 2023. "Combining looped heat pipe and thermoelectric generator module to pursue data center servers with possible power usage effectiveness less than 1," Applied Energy, Elsevier, vol. 332(C).
    18. Luo, Ding & Wang, Ruochen & Yan, Yuying & Sun, Zeyu & Zhou, Weiqi & Ding, Renkai, 2021. "Comparison of different fluid-thermal-electric multiphysics modeling approaches for thermoelectric generator systems," Renewable Energy, Elsevier, vol. 180(C), pages 1266-1277.
    19. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Liang, Zhaojun & Liang, Yifan & Li, Yanzhe, 2019. "Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery," Applied Energy, Elsevier, vol. 239(C), pages 425-433.
    20. Luo, Ding & Sun, Zeyu & Wang, Ruochen, 2022. "Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1303-:d:1047276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.