IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1250-d1604882.html
   My bibliography  Save this article

Biomimetic Design for Enhanced Thermal Performance of Vapor Chambers

Author

Listed:
  • Jingyu Shen

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Ce Guo

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

Vapor chambers (VCs) are efficient heat spreaders that rely on wicks to realize the circulation of a phase-changing working liquid and can be used to address heat dissipation problems in electronic devices, aerospace, and satellite equipment. In this study, we propose a novel vapor chamber with biomimetic wick structures and composite lattice supports to enhance the thermal management and load-bearing performance of vapor chambers. The experiments and COMSOL multiphysics 6.1 simulation results indicate that the biomimetic design can improve the startup performance, thermal management, and load-bearing performance of the VC. Compared to conventional VCs, at a filling ratio of 20% the biomimetic VC reduces the time to reach a steady state by 11.7% and improves the uniformity of temperature by 7.74%. This study provides a novel design concept for VCs and verifies the operating performance of vapor in high heat flux density cases, providing a reference for the innovative design and enhanced heat transfer of phase change-based thermal management equipment.

Suggested Citation

  • Jingyu Shen & Ce Guo, 2025. "Biomimetic Design for Enhanced Thermal Performance of Vapor Chambers," Energies, MDPI, vol. 18(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1250-:d:1604882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    2. Liaofei Yin & Zhonglin Yang & Kexin Zhang & Yingli Xue & Chao Dang, 2023. "Heat Transfer of Water Flow Boiling in Nanostructured Open Microchannels," Energies, MDPI, vol. 16(3), pages 1-11, January.
    3. Yujuan Xia & Feng Yao & Mengxiang Wang, 2023. "Experimental Investigation on Thermal Performance of Vapor Chambers with Diffident Wick Structures," Energies, MDPI, vol. 16(18), pages 1-16, September.
    4. Luo, Lizhong & Huang, Bi & Bai, Xingying & Cheng, Zongyi & Jian, Qifei, 2020. "Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers," Applied Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Ming Peng & Enci Dong & Li Chen & Yu Wang & Wen-Quan Tao, 2022. "Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 15(17), pages 1-21, August.
    3. Gao, Datong & Li, Jing & Ren, Xiao & Hu, Tianxiang & Pei, Gang, 2022. "A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector," Renewable Energy, Elsevier, vol. 197(C), pages 966-977.
    4. Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
    5. Chen, Gong & Yan, Caiman & Yin, Shubin & Tang, Yong & Yuan, Wei & Zhang, Shiwei, 2024. "Vapor-liquid coplanar structure enables high thermal conductive and extremely ultrathin vapor chamber," Energy, Elsevier, vol. 301(C).
    6. Bai, Xingying & Luo, Lizhong & Huang, Bi & Huang, Zhe & Jian, Qifei, 2021. "Flow characteristics analysis for multi-path hydrogen supply within proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 301(C).
    7. Wan Afin Fadzlin & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Zafar Said, 2022. "Global Challenges of Current Building-Integrated Solar Water Heating Technologies and Its Prospects: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-42, July.
    8. Abu-Hamdeh, Nidal H. & Bantan, Rashad A.R. & Khoshvaght-Aliabadi, Morteza & Alimoradi, Ashkan, 2020. "Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors," Renewable Energy, Elsevier, vol. 161(C), pages 1260-1275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1250-:d:1604882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.