IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1193-d1043425.html
   My bibliography  Save this article

Enhancement of Heavy-Duty Engines Performance and Reliability Using Cylinder Pressure Information

Author

Listed:
  • Alessandro Brusa

    (Department of Industrial Engineering, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

  • Enrico Corti

    (Department of Industrial Engineering, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

  • Alessandro Rossi

    (Department of Industrial Engineering, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

  • Davide Moro

    (Department of Industrial Engineering, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy)

Abstract

Sustainability issues are becoming increasingly prominent in applications requiring the use of heavy-duty engines. Therefore, it is important to cut the emissions and costs of such engines to reduce the carbon footprint and keep the operating expenses under control. Even if for some applications a battery electric equipment is introduced, the diesel-equipped machinery is still popular thanks to the longer operating range. In this field, the open pit mines are a good example. In fact, the Total Cost of Ownership (TCO) of the mining equipment is highly impacted by fuel consumption (engine efficiency) and reliability (service interval and engine life). The present work is focused on efficiency enhancements achievable through the application of a combustion control strategy based on the in-cylinder pressure information. The benefits are mainly due to two factors. First, the negative effects of injectors aging can be compensated. Second, cylindrical online calibration of the control parameters enables the combustion system optimization. The article is divided into two parts. The first part describes the toolchain that is designed for the real-time application of the combustion control system, while the second part concerns the algorithm that would be implemented on the Engine Control Unit (ECU) to leverage the in-cylinder pressure information. The assessment of the potential benefits and feasibility of the combustion control algorithm is carried out in a Software in the Loop (SiL) environment, simulating both the developed control strategy and the engine behavior (Liebherr D98). Our goal is to validate the control algorithm through SiL simulations. The results of the validation process demonstrate the effectiveness of the control strategy: firstly, cylinder disparity on IMEP (+/−2.5% in reference conditions) is virtually canceled. Secondly, MFB50 is individually optimized, equalizing Pmax among the cylinders (+/−4% for the standard calibration) without exceeding the reliability threshold. In addition to this, BSFC is reduced by 1% thanks to the accurate cylinder-by-cylinder calibration. Finally, aging effects or fuel variations can be implicitly compensated, keeping optimal performance thorough the engine life.

Suggested Citation

  • Alessandro Brusa & Enrico Corti & Alessandro Rossi & Davide Moro, 2023. "Enhancement of Heavy-Duty Engines Performance and Reliability Using Cylinder Pressure Information," Energies, MDPI, vol. 16(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1193-:d:1043425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dindarloo, Saeid R. & Siami-Irdemoosa, Elnaz, 2016. "Determinants of fuel consumption in mining trucks," Energy, Elsevier, vol. 112(C), pages 232-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patterson, S.R. & Kozan, E. & Hyland, P., 2017. "Energy efficient scheduling of open-pit coal mine trucks," European Journal of Operational Research, Elsevier, vol. 262(2), pages 759-770.
    2. Natallia Pashkevich & Darek Haftor & Mikael Karlsson & Soumitra Chowdhury, 2019. "Sustainability through the Digitalization of Industrial Machines: Complementary Factors of Fuel Consumption and Productivity for Forklifts with Sensors," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    3. Suh, Dong Hee, 2021. "Exploring the U.S. mining industry's demand system for production factors: Implications for economic sustainability," Resources Policy, Elsevier, vol. 74(C).
    4. Yaghoub Pourasad & Amirhossein Ghanati & Mehrdad Khosravi, 2017. "Optimal design of aerodynamic force supplementary devices for the improvement of fuel consumption and emissions," Energy & Environment, , vol. 28(3), pages 263-282, May.
    5. Wang, Qian & Gu, Qinghua & Li, Xuexian & Xiong, Naixue, 2024. "Comprehensive overview: Fleet management drives green and climate-smart open pit mine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Ji, Shaobo & Chen, Qiulin & Shu, Minglei & Tian, Guohong & Liao, Baoliang & Lv, Chengju & Li, Meng & Lan, Xin & Cheng, Yong, 2020. "Influence of operation management on fuel consumption of coach fleet," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1193-:d:1043425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.