IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1043-d1039079.html
   My bibliography  Save this article

A Comparison and Introduction of Novel Solar Panel’s Fault Diagnosis Technique Using Deep-Features Shallow-Classifier through Infrared Thermography

Author

Listed:
  • Waqas Ahmed

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Muhammad Umair Ali

    (Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Republic of Korea)

  • M. A. Parvez Mahmud

    (School of Electrical Mechanical and Infrastructure Engineering, University of Melbourne, Parkville, VIC 3010, Australia)

  • Kamran Ali Khan Niazi

    (Department of Mechanical and Production Engineering, Aarhus University, 8000 Aarhus, Denmark)

  • Amad Zafar

    (Department of Intelligent Mechatronics, Sejong University, Seoul 05006, Republic of Korea)

  • Tamas Kerekes

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Solar photovoltaics (PV) are susceptible to environmental and operational stresses due to their operation in an open atmosphere. Early detection and treatment of stress prevents hotspots and the total failure of solar panels. In response, the literature has proposed several approaches, each with its own limitations, such as high processing system requirements, large amounts of memory, long execution times, fewer types of faults diagnosed, failure to extract relevant features, and so on. Therefore, this research proposes a fast framework with the least memory and computing system requirements for the six different faults of a solar panel. Infrared thermographs from solar panels are fed into intense and architecturally complex deep convolutional networks capable of differentiating one million images into 1000 classes. Features without backpropagation are calculated to reduce execution time. Afterward, deep features are fed to shallow classifiers due to their fast training time. The proposed approach trains the shallow classifier in approximately 13 s with 95.5% testing accuracy. The approach is validated by manually extracting thermograph features and through the transfer of learned deep neural network approaches in terms of accuracy and speed. The proposed method is also compared with other existing methods.

Suggested Citation

  • Waqas Ahmed & Muhammad Umair Ali & M. A. Parvez Mahmud & Kamran Ali Khan Niazi & Amad Zafar & Tamas Kerekes, 2023. "A Comparison and Introduction of Novel Solar Panel’s Fault Diagnosis Technique Using Deep-Features Shallow-Classifier through Infrared Thermography," Energies, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1043-:d:1039079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Waqas Ahmed & Jamil Ahmed Sheikh & Shahjadi Hisan Farjana & M. A. Parvez Mahmud, 2021. "Defects Impact on PV System GHG Mitigation Potential and Climate Change," Sustainability, MDPI, vol. 13(14), pages 1-9, July.
    2. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    3. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    4. Gabriele C. Eder & Yuliya Voronko & Christina Hirschl & Rita Ebner & Gusztáv Újvári & Wolfgang Mühleisen, 2018. "Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules," Energies, MDPI, vol. 11(5), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Kun & Chen, Xiang & Weng, Shuai & Liu, Yongjie & Zhang, Jingwei & Li, Yuanliang & Yang, Zenan, 2023. "Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance," Energy, Elsevier, vol. 262(PB).
    2. João Gomes, 2019. "Assessment of the Impact of Stagnation Temperatures in Receiver Prototypes of C-PVT Collectors," Energies, MDPI, vol. 12(15), pages 1-20, August.
    3. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    4. Chen, Xiang & Ding, Kun & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Jiang, Meng & Gao, Ruiguang & Liu, Zengquan, 2023. "Research on real-time identification method of model parameters for the photovoltaic array," Applied Energy, Elsevier, vol. 342(C).
    5. Amal Hichri & Mansour Hajji & Majdi Mansouri & Kamaleldin Abodayeh & Kais Bouzrara & Hazem Nounou & Mohamed Nounou, 2022. "Genetic-Algorithm-Based Neural Network for Fault Detection and Diagnosis: Application to Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    6. Mellit, A. & Benghanem, M. & Kalogirou, S. & Massi Pavan, A., 2023. "An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine learning and the internet of things," Renewable Energy, Elsevier, vol. 208(C), pages 399-408.
    7. Jingwei Zhang & Zenan Yang & Kun Ding & Li Feng & Frank Hamelmann & Xihui Chen & Yongjie Liu & Ling Chen, 2022. "Modeling of Photovoltaic Array Based on Multi-Agent Deep Reinforcement Learning Using Residuals of I–V Characteristics," Energies, MDPI, vol. 15(18), pages 1-17, September.
    8. Mohamed Benghanem & Adel Mellit & Chourouk Moussaoui, 2023. "Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    9. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    10. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    11. Khaled Osmani & Ahmad Haddad & Mohammad Alkhedher & Thierry Lemenand & Bruno Castanier & Mohamad Ramadan, 2023. "A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    12. Zhang, Jingwei & Liu, Yongjie & Li, Yuanliang & Chen, Xiang & Ding, Kun & Yan, Jun & Chen, Xihui, 2024. "An I–V characteristic reconstruction-based partial shading diagnosis and quantitative evaluation for photovoltaic strings," Energy, Elsevier, vol. 300(C).
    13. Waqas Ahmed & Jamil Ahmed Sheikh & M. A. Parvez Mahmud, 2021. "Impact of PV System Tracking on Energy Production and Climate Change," Energies, MDPI, vol. 14(17), pages 1-7, August.
    14. Ding, Kun & Chen, Xiang & Jiang, Meng & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Gao, Ruiguang & Cui, Liu, 2024. "Feature extraction and fault diagnosis of photovoltaic array based on current–voltage conversion," Applied Energy, Elsevier, vol. 353(PB).
    15. Rahman, Md Momtazur & Khan, Imran & Alameh, Kamal, 2021. "Potential measurement techniques for photovoltaic module failure diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Wilfried van Sark, 2019. "Photovoltaic System Design and Performance," Energies, MDPI, vol. 12(10), pages 1-6, May.
    17. Tarek Berghout & Mohamed Benbouzid & Toufik Bentrcia & Xiandong Ma & Siniša Djurović & Leïla-Hayet Mouss, 2021. "Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects," Energies, MDPI, vol. 14(19), pages 1-24, October.
    18. Mühleisen, W. & Hirschl, C. & Brantegger, G. & Neumaier, L. & Spielberger, M. & Sonnleitner, H. & Kubicek, B. & Ujvari, G. & Ebner, R. & Schwark, M. & Eder, G.C. & Voronko, Y. & Knöbl, K. & Stoicescu,, 2019. "Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants," Renewable Energy, Elsevier, vol. 134(C), pages 321-329.
    19. Naveen Venkatesh Sridharan & Jerome Vasanth Joseph & Sugumaran Vaithiyanathan & Mohammadreza Aghaei, 2023. "Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules," Energies, MDPI, vol. 16(15), pages 1-17, August.
    20. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1043-:d:1039079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.