An Overview of Non-Intrusive Load Monitoring Based on V-I Trajectory Signature
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Dandan & Li, Jiangfeng & Zeng, Xin & Stankovic, Vladimir & Stankovic, Lina & Xiao, Changjiang & Shi, Qingjiang, 2023. "Transfer learning for multi-objective non-intrusive load monitoring in smart building," Applied Energy, Elsevier, vol. 329(C).
- Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
- Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
- Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
- Jiachuan Shi & Dingrui Zhi & Rao Fu, 2023. "Research on a Non-Intrusive Load Recognition Algorithm Based on High-Frequency Signal Decomposition with Improved VI Trajectory and Background Color Coding," Mathematics, MDPI, vol. 12(1), pages 1-20, December.
- Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Andrea Mariscotti, 2022. "Non-Intrusive Load Monitoring Applied to AC Railways," Energies, MDPI, vol. 15(11), pages 1-27, June.
- Sarra Houidi & Dominique Fourer & François Auger & Houda Ben Attia Sethom & Laurence Miègeville, 2021. "Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning," Energies, MDPI, vol. 14(9), pages 1-28, May.
- Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
- Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).
- Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
- Christos Athanasiadis & Dimitrios Doukas & Theofilos Papadopoulos & Antonios Chrysopoulos, 2021. "A Scalable Real-Time Non-Intrusive Load Monitoring System for the Estimation of Household Appliance Power Consumption," Energies, MDPI, vol. 14(3), pages 1-23, February.
- Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
- Yang, Chao & Liang, Gaoqi & Liu, Jinjie & Liu, Guolong & Yang, Hongming & Zhao, Junhua & Dong, Zhaoyang, 2023. "A non-intrusive carbon emission accounting method for industrial corporations from the perspective of modern power systems," Applied Energy, Elsevier, vol. 350(C).
- Douglas Paulo Bertrand Renaux & Fabiana Pottker & Hellen Cristina Ancelmo & André Eugenio Lazzaretti & Carlos Raiumundo Erig Lima & Robson Ribeiro Linhares & Elder Oroski & Lucas da Silva Nolasco & Lu, 2020. "A Dataset for Non-Intrusive Load Monitoring: Design and Implementation," Energies, MDPI, vol. 13(20), pages 1-35, October.
- Inoussa Laouali & Isaías Gomes & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili & Antonio Ruano, 2022. "Energy Disaggregation Using Multi-Objective Genetic Algorithm Designed Neural Networks," Energies, MDPI, vol. 15(23), pages 1-29, November.
- Xi He & Heng Dong & Wanli Yang & Jun Hong, 2022. "A Novel Denoising Auto-Encoder-Based Approach for Non-Intrusive Residential Load Monitoring," Energies, MDPI, vol. 15(6), pages 1-15, March.
- Georgios Yiasoumas & Lazar Berbakov & Valentina Janev & Alessandro Asmundo & Eneko Olabarrieta & Andrea Vinci & Giovanni Baglietto & George E. Georghiou, 2023. "Key Aspects and Challenges in the Implementation of Energy Communities," Energies, MDPI, vol. 16(12), pages 1-24, June.
- Xiao-Yu Zhang & Stefanie Kuenzel & José-Rodrigo Córdoba-Pachón & Chris Watkins, 2020. "Privacy-Functionality Trade-Off: A Privacy-Preserving Multi-Channel Smart Metering System," Energies, MDPI, vol. 13(12), pages 1-30, June.
- Hari Prasad Devarapalli & Venkata Samba Sesha Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2021. "Demand-Side Management for Improvement of the Power Quality in Smart Homes Using Non-Intrusive Identification of Appliance Usage Patterns with the True Power Factor," Energies, MDPI, vol. 14(16), pages 1-19, August.
- Netzah Calamaro & Moshe Donko & Doron Shmilovitz, 2021. "A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements," Energies, MDPI, vol. 14(21), pages 1-37, November.
More about this item
Keywords
non-intrusive load monitoring; load identification; voltage–current trajectory; deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:939-:d:1035587. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.