IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2290-d776027.html
   My bibliography  Save this article

A Novel Denoising Auto-Encoder-Based Approach for Non-Intrusive Residential Load Monitoring

Author

Listed:
  • Xi He

    (Department of Electrical and Information Engineering, Hunan Institute of Technology, Hengyang 421002, China)

  • Heng Dong

    (Department of Electrical and Information Engineering, Hunan Institute of Technology, Hengyang 421002, China)

  • Wanli Yang

    (Department of Electrical and Information Engineering, Hunan University, Changsha 410006, China)

  • Jun Hong

    (Department of Electrical and Information Engineering, Hunan Institute of Technology, Hengyang 421002, China)

Abstract

Mounting concerns pertaining to energy efficiency have led to the research of load monitoring. By Non-Intrusive Load Monitoring (NILM), detailed information regarding the electric energy consumed by each appliance per day or per hour can be formed. The accuracy of the previous residential load monitoring approach relies heavily on the data acquisition frequency of the energy meters. It brings high overall cost issues, and furthermore, the differentiating algorithm becomes much more complicated. Based on this, we proposed a novel non-Intrusive residential load disaggregation method that only depends on the regular data acquisition speed of active power measurements. Additionally, this approach brings some novelties to the traditionally used denoising Auto-Encoder (dAE), i.e., the reconfiguration of the overlapping parts of the sliding windows. The median filter is used for the data processing of the overlapping window. Two datasets, i.e., the Reference Energy Disaggregation Dataset (REDD) and TraceBase, are used for test and validation. By numerical testing of the real residential data, it proves that the proposed method is superior to the traditional Factorial Hidden Markov Model (FHMM)-based approach. Furthermore, the proposed method can be used for energy data, disaggregation disregarding the brand and model of each appliance.

Suggested Citation

  • Xi He & Heng Dong & Wanli Yang & Jun Hong, 2022. "A Novel Denoising Auto-Encoder-Based Approach for Non-Intrusive Residential Load Monitoring," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2290-:d:776027
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    2. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leijiao Ge & Jun Yan & Yonghui Sun & Zhongguan Wang, 2022. "Situational Awareness for Smart Distribution Systems," Energies, MDPI, vol. 15(11), pages 1-3, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    2. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    3. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    4. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Andrea Mariscotti, 2022. "Non-Intrusive Load Monitoring Applied to AC Railways," Energies, MDPI, vol. 15(11), pages 1-27, June.
    6. Sarra Houidi & Dominique Fourer & François Auger & Houda Ben Attia Sethom & Laurence Miègeville, 2021. "Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning," Energies, MDPI, vol. 14(9), pages 1-28, May.
    7. Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
    8. Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).
    9. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    10. Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
    11. Christos Athanasiadis & Dimitrios Doukas & Theofilos Papadopoulos & Antonios Chrysopoulos, 2021. "A Scalable Real-Time Non-Intrusive Load Monitoring System for the Estimation of Household Appliance Power Consumption," Energies, MDPI, vol. 14(3), pages 1-23, February.
    12. Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    13. Yang, Chao & Liang, Gaoqi & Liu, Jinjie & Liu, Guolong & Yang, Hongming & Zhao, Junhua & Dong, Zhaoyang, 2023. "A non-intrusive carbon emission accounting method for industrial corporations from the perspective of modern power systems," Applied Energy, Elsevier, vol. 350(C).
    14. Douglas Paulo Bertrand Renaux & Fabiana Pottker & Hellen Cristina Ancelmo & André Eugenio Lazzaretti & Carlos Raiumundo Erig Lima & Robson Ribeiro Linhares & Elder Oroski & Lucas da Silva Nolasco & Lu, 2020. "A Dataset for Non-Intrusive Load Monitoring: Design and Implementation," Energies, MDPI, vol. 13(20), pages 1-35, October.
    15. George C. Konstantopoulos & Antonio T. Alexandridis & Panos C. Papageorgiou, 2020. "Towards the Integration of Modern Power Systems into a Cyber–Physical Framework," Energies, MDPI, vol. 13(9), pages 1-20, May.
    16. Scapino, Luca & Zondag, Herbert A. & Diriken, Jan & Rindt, Camilo C.M. & Van Bael, Johan & Sciacovelli, Adriano, 2019. "Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Inoussa Laouali & Isaías Gomes & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili & Antonio Ruano, 2022. "Energy Disaggregation Using Multi-Objective Genetic Algorithm Designed Neural Networks," Energies, MDPI, vol. 15(23), pages 1-29, November.
    19. Georgios Yiasoumas & Lazar Berbakov & Valentina Janev & Alessandro Asmundo & Eneko Olabarrieta & Andrea Vinci & Giovanni Baglietto & George E. Georghiou, 2023. "Key Aspects and Challenges in the Implementation of Energy Communities," Energies, MDPI, vol. 16(12), pages 1-24, June.
    20. Xiao-Yu Zhang & Stefanie Kuenzel & José-Rodrigo Córdoba-Pachón & Chris Watkins, 2020. "Privacy-Functionality Trade-Off: A Privacy-Preserving Multi-Channel Smart Metering System," Energies, MDPI, vol. 13(12), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2290-:d:776027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.