IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p803-d1031238.html
   My bibliography  Save this article

Prognosis of Lithium-Ion Batteries’ Remaining Useful Life Based on a Sequence-to-Sequence Model with Variational Mode Decomposition

Author

Listed:
  • Chunxiang Zhu

    (School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
    Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China
    College of Engineering Training Centre, China Jiliang University, Hangzhou 310018, China)

  • Zhiwei He

    (School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
    Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China)

  • Zhengyi Bao

    (School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
    Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China)

  • Changcheng Sun

    (School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
    Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China)

  • Mingyu Gao

    (School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
    Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China)

Abstract

The time-varying, dynamic, nonlinear, and other characteristics of lithium-ion batteries, as well as the capacity regeneration phenomenon, leads to the low accuracy of the traditional deep learning models in predicting the remaining useful life of lithium-ion batteries. This paper established a sequence-to-sequence model for remaining useful life prediction by combining the variational modal decomposition with bi-directional long short-term memory and Bayesian hyperparametric optimization. First, variational modal decomposition is used for noise reduction processing to maximize the retention of the original information of capacity degradation. Second, the capacity declining trend after noise reduction is modeled and predicted by the combination of bi-directional long-short term memory and temporal attention mechanism. In addition, a Bayesian optimizer is used to adaptively adjust the hyperparameters while training the model. Finally, the model was validated on NASA and CALCE data sets, and the results show that the model can accurately predict the future trend with only the initial 12% capacity data.

Suggested Citation

  • Chunxiang Zhu & Zhiwei He & Zhengyi Bao & Changcheng Sun & Mingyu Gao, 2023. "Prognosis of Lithium-Ion Batteries’ Remaining Useful Life Based on a Sequence-to-Sequence Model with Variational Mode Decomposition," Energies, MDPI, vol. 16(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:803-:d:1031238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
    2. Hong, Joonki & Lee, Dongheon & Jeong, Eui-Rim & Yi, Yung, 2020. "Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning," Applied Energy, Elsevier, vol. 278(C).
    3. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
    5. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    6. Thelen, Adam & Li, Meng & Hu, Chao & Bekyarova, Elena & Kalinin, Sergey & Sanghadasa, Mohan, 2022. "Augmented model-based framework for battery remaining useful life prediction," Applied Energy, Elsevier, vol. 324(C).
    7. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Ding, Pan & Liu, Xiaojuan & Li, Huiqin & Huang, Zequan & Zhang, Ke & Shao, Long & Abedinia, Oveis, 2021. "Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Sarasketa-Zabala, E. & Martinez-Laserna, E. & Berecibar, M. & Gandiaga, I. & Rodriguez-Martinez, L.M. & Villarreal, I., 2016. "Realistic lifetime prediction approach for Li-ion batteries," Applied Energy, Elsevier, vol. 162(C), pages 839-852.
    10. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    11. Chen, Dinghong & Zhang, Weige & Zhang, Caiping & Sun, Bingxiang & Cong, XinWei & Wei, Shaoyuan & Jiang, Jiuchun, 2022. "A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hairui Wang & Xin Ye & Yuanbo Li & Guifu Zhu, 2023. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Mode Decomposition and Time Series," Sustainability, MDPI, vol. 15(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
    2. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    4. Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Two-stage prediction method for capacity aging trajectories of lithium-ion batteries based on Siamese-convolutional neural network," Energy, Elsevier, vol. 295(C).
    5. Sohn, Suyeon & Byun, Ha-Eun & Lee, Jay H., 2022. "Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation," Applied Energy, Elsevier, vol. 328(C).
    6. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    9. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    12. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    13. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    14. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    15. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    16. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    17. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2024. "Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning," Applied Energy, Elsevier, vol. 358(C).
    18. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    19. J. N. Chandra Sekhar & Bullarao Domathoti & Ernesto D. R. Santibanez Gonzalez, 2023. "Prediction of Battery Remaining Useful Life Using Machine Learning Algorithms," Sustainability, MDPI, vol. 15(21), pages 1-28, October.
    20. Li, Yang & Wang, Shunli & Chen, Lei & Qi, Chuangshi & Fernandez, Carlos, 2023. "Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:803-:d:1031238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.