IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p787-d1030648.html
   My bibliography  Save this article

Electricity and Heat Demand in Steel Industry Technological Processes in Industry 4.0 Conditions

Author

Listed:
  • Bożena Gajdzik

    (Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Radosław Wolniak

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Wieslaw Wes Grebski

    (Penn State Hazleton, Pennsylvania State University, 76 University Drive, Hazleton, PA 18202-8025, USA)

Abstract

The publication presents heat and electricity management in the Polish steel industry. The paper is based on actual data on heat and electricity consumption and intensity by processes in the steel industry in Poland in Industry 4.0 conditions. Two steel production processes are used in Poland: EAF Electric Arc Furnace and BOF Basic Oxygen Furnace. The analysis is an analysis of actual data is used to characterise the electricity and heat consumption by processes in the Polish steel industry. The analysis shows that the EAF technology is always more electricity intensive and the BOF technology more heat intensive. On the basis of conducted analysis, it can be concluded that pro-environmental innovations in the steel industry should first aim to reduce the electricity consumption of EAF technology and the heat consumption of BOF. An analysis of data for Poland for the period 2004–2020 shows that both cases occurred. The study shows that the heat consumption of BOF technologies has been steadily decreasing since 2010, and the electricity consumption of EAF technologies has been decreasing throughout the period under review. It can be concluded from this that the Polish steel industry is adapting to pro-environmental requirements and, through the introduction of technological innovations, is moving towards the concept of sustainable steel production according to green steel principles. The decrease in energy intensity (means electricity) of steel produced according to EAF technology is an important issue, as the high energy intensity of EAF processes affects the overall energy intensity of the steel production in Poland. In the future, the use of new innovative technological solutions, including solutions based on Industry 4.0 principles, should help the Polish steel industry to further reduce the level of electricity and heat consumption. The driving force behind the investment is the boom in the steel market. The authors made a short-term forecasts of steel production (2022–2025). The annual forecasts determined and analyses made were used to determine the heat and energy consumption of the Polish steel industry up to 2025.

Suggested Citation

  • Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "Electricity and Heat Demand in Steel Industry Technological Processes in Industry 4.0 Conditions," Energies, MDPI, vol. 16(2), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:787-:d:1030648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richardson-Barlow, Clare & Pimm, Andrew J. & Taylor, Peter G. & Gale, William F., 2022. "Policy and pricing barriers to steel industry decarbonisation: A UK case study," Energy Policy, Elsevier, vol. 168(C).
    2. Saebi, Tina & Foss, Nicolai J., 2015. "Business models for open innovation: Matching heterogeneous open innovation strategies with business model dimensions," European Management Journal, Elsevier, vol. 33(3), pages 201-213.
    3. Bożena Gajdzik & Włodzimierz Sroka & Jolita Vveinhardt, 2021. "Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(16), pages 1-17, August.
    4. Bożena Gajdzik & Włodzimierz Sroka, 2021. "Resource Intensity vs. Investment in Production Installations—The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(2), pages 1-16, January.
    5. Henkel, Joachim, 2006. "Selective revealing in open innovation processes: The case of embedded Linux," Research Policy, Elsevier, vol. 35(7), pages 953-969, September.
    6. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    7. Radosław Wolniak & Sebastian Saniuk & Sandra Grabowska & Bożena Gajdzik, 2020. "Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example," Energies, MDPI, vol. 13(11), pages 1-16, June.
    8. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    9. S. M. Taslim Uddin Raju & Amlan Sarker & Apurba Das & Md. Milon Islam & Mabrook S. Al-Rakhami & Atif M. Al-Amri & Tasniah Mohiuddin & Fahad R. Albogamy & Shahzad Sarfraz, 2022. "An Approach for Demand Forecasting in Steel Industries Using Ensemble Learning," Complexity, Hindawi, vol. 2022, pages 1-19, February.
    10. Bożena Gajdzik & Radosław Wolniak, 2021. "Digitalisation and Innovation in the Steel Industry in Poland—Selected Tools of ICT in an Analysis of Statistical Data and a Case Study," Energies, MDPI, vol. 14(11), pages 1-25, May.
    11. Bożena Gajdzik & Radosław Wolniak, 2021. "Transitioning of Steel Producers to the Steelworks 4.0—Literature Review with Case Studies," Energies, MDPI, vol. 14(14), pages 1-22, July.
    12. Bozena Gajdzik, 2022. "How Steel Mills Transform into Smart Mills: Digital Changes and Development Determinants in the Polish Steel Industry," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 27-42.
    13. Bożena Gajdzik & Sandra Grabowska & Sebastian Saniuk & Tadeusz Wieczorek, 2020. "Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0," Energies, MDPI, vol. 13(16), pages 1-27, August.
    14. JinHyo Joseph Yun & Zheng Liu, 2019. "Micro- and Macro-Dynamics of Open Innovation with a Quadruple-Helix Model," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    15. Wu, Xuecheng & Zhao, Liang & Zhang, Yongxin & Zhao, Lingjie & Zheng, Chenghang & Gao, Xiang & Cen, Kefa, 2016. "Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China," Applied Energy, Elsevier, vol. 184(C), pages 171-183.
    16. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    2. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    3. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    4. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
    5. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    6. Izabela Jonek-Kowalska, 2023. "Motives for the Use of Photovoltaic Installations in Poland against the Background of the Share of Solar Energy in the Structure of Energy Resources in the Developing Economies of Central and Eastern ," Resources, MDPI, vol. 12(8), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
    2. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    3. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2022. "An Econometric Model of the Operation of the Steel Industry in POLAND in the Context of Process Heat and Energy Consumption," Energies, MDPI, vol. 15(21), pages 1-26, October.
    4. Bozena Gajdzik, 2022. "How Steel Mills Transform into Smart Mills: Digital Changes and Development Determinants in the Polish Steel Industry," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 27-42.
    5. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    6. Bożena Gajdzik & Włodzimierz Sroka & Jolita Vveinhardt, 2021. "Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(16), pages 1-17, August.
    7. Bożena Gajdzik & Radosław Wolniak, 2021. "Transitioning of Steel Producers to the Steelworks 4.0—Literature Review with Case Studies," Energies, MDPI, vol. 14(14), pages 1-22, July.
    8. Anna Kwiotkowska & Radosław Wolniak & Bożena Gajdzik & Magdalena Gębczyńska, 2022. "Configurational Paths of Leadership Competency Shortages and 4.0 Leadership Effectiveness: An fs/QCA Study," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    9. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    10. Bozena Gajdzik, 2022. "A Decade of Research on Industry 4.0: A Bibliometric Study of Key Research Areas with Life Cycle Analysis of Publication Dynamics," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 118-134.
    11. Bożena Gajdzik & Radosław Wolniak, 2021. "Digitalisation and Innovation in the Steel Industry in Poland—Selected Tools of ICT in an Analysis of Statistical Data and a Case Study," Energies, MDPI, vol. 14(11), pages 1-25, May.
    12. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    13. Nestor Shpak & Solomiya Ohinok & Ihor Kulyniak & W³odzimierz Sroka & Armenia Androniceanu, 2022. "Macroeconomic Indicators and CO2 Emissions in the EU Region," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(61), pages 817-817, August.
    14. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
    15. Bozena Gajdzik, 2021. "Transformation from Steelworks 3.0 to Steelworks 4.0: Key Technologies of Industry 4.0 and their Usefulness for Polish Steelworks in Direct Research," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 61-71.
    16. Rafał Trzaska & Adam Sulich & Michał Organa & Jerzy Niemczyk & Bartosz Jasiński, 2021. "Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions," Energies, MDPI, vol. 14(23), pages 1-21, November.
    17. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    18. Belén Payán-Sánchez & Luis Jesús Belmonte-Ureña & José Antonio Plaza-Úbeda & Diego Vazquez-Brust & Natalia Yakovleva & Miguel Pérez-Valls, 2021. "Open Innovation for Sustainability or Not: Literature Reviews of Global Research Trends," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    19. Nestor Shpak & Solomiya Ohinok & Ihor Kulyniak & Włodzimierz Sroka & Yuriy Fedun & Romualdas Ginevičius & Joanna Cygler, 2022. "CO 2 Emissions and Macroeconomic Indicators: Analysis of the Most Polluted Regions in the World," Energies, MDPI, vol. 15(8), pages 1-22, April.
    20. Wang, Hong & Wu, Jun-Jun & Zhu, Xun & Liao, Qiang & Zhao, Liang, 2016. "Energy–environment–economy evaluations of commercial scale systems for blast furnace slag treatment: Dry slag granulation vs. water quenching," Applied Energy, Elsevier, vol. 171(C), pages 314-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:787-:d:1030648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.