IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v117y2014icp157-166.html
   My bibliography  Save this article

A new approach for real time voltage control using demand response in an automated distribution system

Author

Listed:
  • Zakariazadeh, Alireza
  • Homaee, Omid
  • Jadid, Shahram
  • Siano, Pierluigi

Abstract

The main goal of Distribution Automation (DA) is the real-time operation, usually without operator intervention, of distribution systems as a consequence of load demand or power generation variations and failure conditions in the distribution systems. As real time voltage control is known as a legacy system that can be fully activated by DA equipments, in this paper an analytical study is reported to demonstrate the effects of load curtailments on voltages profile in distribution network. A new method for real time voltage control, based on emergency demand response program, is also proposed. The proposed method uses the real-time measured data collected by RTUs and determines the tap changer condition and load curtailment required in order to maintain the distribution voltage profile. Emergency conditions include outages of generators and lines, and fluctuations due to unpredictable load demand and renewable generation. A novel voltage sensitivity matrix, based on performed voltage sensitivity analysis due to load participation in demand response program, is also proposed. In order to verify the effectiveness and robustness of the proposed control scheme, it is tested on a typical automated distribution network. Simulation results show that the proper selection of load curtailment can improve voltage profile and that, in emergency conditions, demand response is an effective way to keep the voltage in a permissible range.

Suggested Citation

  • Zakariazadeh, Alireza & Homaee, Omid & Jadid, Shahram & Siano, Pierluigi, 2014. "A new approach for real time voltage control using demand response in an automated distribution system," Applied Energy, Elsevier, vol. 117(C), pages 157-166.
  • Handle: RePEc:eee:appene:v:117:y:2014:i:c:p:157-166
    DOI: 10.1016/j.apenergy.2013.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913009884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Venkatesan, Naveen & Solanki, Jignesh & Solanki, Sarika Khushalani, 2012. "Residential Demand Response model and impact on voltage profile and losses of an electric distribution network," Applied Energy, Elsevier, vol. 96(C), pages 84-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    2. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Hooshmand, Ehsan & Rabiee, Abbas, 2019. "Energy management in distribution systems, considering the impact of reconfiguration, RESs, ESSs and DR: A trade-off between cost and reliability," Renewable Energy, Elsevier, vol. 139(C), pages 346-358.
    4. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    5. Azarnia, Mahsa & Rahimiyan, Morteza & Siano, Pierluigi, 2024. "Offering of active distribution network in real-time energy market by integrated energy management system and Volt-Var optimization," Applied Energy, Elsevier, vol. 358(C).
    6. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    7. Ampimah, Benjamin Chris & Sun, Mei & Han, Dun & Wang, Xueyin, 2018. "Optimizing sheddable and shiftable residential electricity consumption by incentivized peak and off-peak credit function approach," Applied Energy, Elsevier, vol. 210(C), pages 1299-1309.
    8. Petinrin, J.O. & Shaabanb, Mohamed, 2016. "Impact of renewable generation on voltage control in distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 770-783.
    9. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    10. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    11. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    12. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    13. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    14. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    15. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    16. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    17. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    18. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    20. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:117:y:2014:i:c:p:157-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.